Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 7
Hydrol. Earth Syst. Sci., 19, 3015–3032, 2015
https://doi.org/10.5194/hess-19-3015-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 3015–3032, 2015
https://doi.org/10.5194/hess-19-3015-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Jul 2015

Research article | 02 Jul 2015

Vulnerability of groundwater resources to interaction with river water in a boreal catchment

A. Rautio et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (21 May 2015) by Jan Seibert
AR by Anne Rautio on behalf of the Authors (22 May 2015)  Author's response
ED: Referee Nomination & Report Request started (22 May 2015) by Jan Seibert
RR by Anonymous Referee #2 (05 Jun 2015)
ED: Publish subject to technical corrections (05 Jun 2015) by Jan Seibert
AR by Anne Rautio on behalf of the Authors (13 Jun 2015)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
Based on low-altitude aerial infrared surveys, around 370 groundwater–surface water interaction sites were located. Longitudinal temperature patterns, stable isotopes and dissolved silica composition of the studied rivers differed. Interaction sites identified in the proximity of 12 municipal water plants during low-flow seasons should be considered as potential risk areas during flood periods and should be taken under consideration in river basin management under changing climatic situations.
Based on low-altitude aerial infrared surveys, around 370 groundwater–surface water...
Citation