Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 7
Hydrol. Earth Syst. Sci., 19, 3109-3131, 2015
https://doi.org/10.5194/hess-19-3109-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 3109-3131, 2015
https://doi.org/10.5194/hess-19-3109-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Jul 2015

Research article | 16 Jul 2015

Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties

S. Garrigues2,1, A. Olioso2,1, J. C. Calvet3, E. Martin3, S. Lafont5, S. Moulin2,1, A. Chanzy2,1, O. Marloie4, S. Buis2,1, V. Desfonds2,1, N. Bertrand2,1, and D. Renard2,1 S. Garrigues et al.
  • 1EMMAH (UMR1114), INRA, Avignon, France
  • 2Université d'Avignon et des Pays de Vaucluse, UMR1114 – EMMAH, 84000 Avignon, France
  • 3CNRM-GAME (UMR3589), Météo-France, CNRS, Toulouse, France
  • 4URFM, INRA, Avignon, France
  • 5ISPA, INRA, Bordeaux, France

Abstract. Evapotranspiration has been recognized as one of the most uncertain terms in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs (Interaction Sol–Biosphere–Atmosphere) simulations of evapotranspiration are assessed at the field scale over a 12-year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamics of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key parameters which drive the simulation of ET, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. A sensitivity analysis is first conducted to quantify the relative contribution of each parameter on ET simulation over 12 years. The impact of the estimation method used to retrieve the soil parameters (pedotransfer function, laboratory and field methods) on ET is then analysed. The benefit of representing the variations in time of the rooting depth and wilting point is evaluated. Finally, the propagation of uncertainties in the soil parameters on ET simulations is quantified through a Monte Carlo analysis and compared with the uncertainties triggered by the mesophyll conductance which is a key above-ground driver of the stomatal conductance.

This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. This results in a high sensitivity of simulated evapotranspiration to uncertainties in the soil moisture at field capacity and the soil moisture at saturation, both of which drive the simulation of soil evaporation. Field capacity was proved to be the most influencing parameter on the simulation of evapotranspiration over the crop succession. The evapotranspiration simulated with the standard surface and soil parameters of the model is largely underestimated. The deficit in cumulative evapotranspiration amounts to 24 % over 12 years. The bias in daily daytime evapotranspiration is −0.24 mm day−1. The ISBA pedotransfer estimates of the soil moisture at saturation and at wilting point are overestimated, which explains most of the evapotranspiration underestimation. The use of field capacity values retrieved from laboratory methods leads to inaccurate simulation of ET due to the lack of representativeness of the soil structure variability at the field scale. The most accurate simulation is achieved with the average values of the soil properties derived from the analysis of field measurements of soil moisture vertical profiles over each crop cycle. The representation of the variations in time of the wilting point and the maximum rooting depth over the crop succession has little impact on the simulation performances. Finally, we show that the uncertainties in the soil parameters can generate substantial uncertainties in ET simulated over 12 years (the 95 % confidence interval represents 23 % of cumulative ET over 12 years). Uncertainties in the mesophyll conductance have lower impact on ET. Measurement random errors explain a large part of the scattering between simulations and measurements at half-hourly timescale. The deficits in simulated ET reported in this work are probably larger due to likely underestimation of ET by eddy-covariance measurements. Other possible model shortcomings include the lack of representation of soil vertical heterogeneity and root profile along with inaccurate energy balance partitioning between the soil and the vegetation at low leaf area index.

Publications Copernicus
Download
Short summary
Land surface model simulations of evapotranspiration are assessed over a 12-year Mediterranean crop succession. Evapotranspiration mainly results from soil evaporation when it is simulated over a Mediterranean crop succession. This leads to a high sensitivity to the soil parameters. Errors on soil hydraulic properties can lead to a large bias in cumulative evapotranspiration over a long period of time. Accounting for uncertainties in soil properties is essential for land surface modelling.
Land surface model simulations of evapotranspiration are assessed over a 12-year Mediterranean...
Citation