Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 7
Hydrol. Earth Syst. Sci., 19, 3217-3238, 2015
https://doi.org/10.5194/hess-19-3217-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 3217-3238, 2015
https://doi.org/10.5194/hess-19-3217-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Jul 2015

Research article | 24 Jul 2015

Impacts of climate change on temperature, precipitation and hydrology in Finland – studies using bias corrected Regional Climate Model data

T. Olsson et al.
Related authors  
Impacts of climate change on extreme floods in Finland – studies using bias corrected Regional Climate Model data
Noora Veijalainen, Juho Jakkila, Taru Olsson, Leif Backman, Bertel Vehviläinen, and Jussi Kaurola
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-602,https://doi.org/10.5194/hess-2017-602, 2017
Revised manuscript not accepted
Short summary
Intense sea-effect snowfall case on the western coast of Finland
Taru Olsson, Tuuli Perttula, Kirsti Jylhä, and Anna Luomaranta
Adv. Sci. Res., 14, 231-239, https://doi.org/10.5194/asr-14-231-2017,https://doi.org/10.5194/asr-14-231-2017, 2017
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography
Johannes Horak, Marlis Hofer, Fabien Maussion, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Hydrol. Earth Syst. Sci., 23, 2715-2734, https://doi.org/10.5194/hess-23-2715-2019,https://doi.org/10.5194/hess-23-2715-2019, 2019
Short summary
Distributive rainfall–runoff modelling to understand runoff-to-baseflow proportioning and its impact on the determination of reserve requirements of the Verlorenvlei estuarine lake, west coast, South Africa
Andrew Watson, Jodie Miller, Manfred Fink, Sven Kralisch, Melanie Fleischer, and Willem de Clercq
Hydrol. Earth Syst. Sci., 23, 2679-2697, https://doi.org/10.5194/hess-23-2679-2019,https://doi.org/10.5194/hess-23-2679-2019, 2019
Short summary
Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data
Yingchun Huang, András Bárdossy, and Ke Zhang
Hydrol. Earth Syst. Sci., 23, 2647-2663, https://doi.org/10.5194/hess-23-2647-2019,https://doi.org/10.5194/hess-23-2647-2019, 2019
Short summary
Mapping soil hydraulic properties using random-forest-based pedotransfer functions and geostatistics
Brigitta Szabó, Gábor Szatmári, Katalin Takács, Annamária Laborczi, András Makó, Kálmán Rajkai, and László Pásztor
Hydrol. Earth Syst. Sci., 23, 2615-2635, https://doi.org/10.5194/hess-23-2615-2019,https://doi.org/10.5194/hess-23-2615-2019, 2019
Short summary
On the choice of calibration metrics for “high-flow” estimation using hydrologic models
Naoki Mizukami, Oldrich Rakovec, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, Hoshin V. Gupta, and Rohini Kumar
Hydrol. Earth Syst. Sci., 23, 2601-2614, https://doi.org/10.5194/hess-23-2601-2019,https://doi.org/10.5194/hess-23-2601-2019, 2019
Short summary
Cited articles  
Andréasson, J., Bergström, S., Carlsson, B., Graham, L., and Lindström, G.: Hydrological change – climate change impact simulations for Sweden, Ambio, 33, 228–234, 2004.
Beldring, S., Engen-Skaugen, T., Førland, E., and Roald, L.: Climate change impacts on hydrological processes in Norway based on two methods for transferring RCM results to meteorological station sites, Tellus A, 60, 439–450, 2008.
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, SMHI, Norrköping, Report RHO No. 7, 134 pp., 1976.
Castro, M., Gallardo, C., Jylhä, K., and Tuomenvirta, H.: The use of a climate-type classification for assessing climate change effects in Europe from an Ensemble of nine regional climate models, Climatic Change, 81, 329–341, https://doi.org/10.1007/s10584-006-9224-1, 2007.
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694, 2008.
Publications Copernicus
Download
Short summary
With most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data and produces more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data in Finland. However, if the biases in the mean or the standard deviation of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections.
With most scenarios the DBS method used preserves the temperature and precipitation trends of...
Citation