Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
  • CiteScore value: 4.10 CiteScore
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
Volume 19, issue 8 | Copyright
Hydrol. Earth Syst. Sci., 19, 3457-3474, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Aug 2015

Research article | 07 Aug 2015

How to predict hydrological effects of local land use change: how the vegetation parameterisation for short rotation coppices influences model results

F. Richter1, C. Döring1, M. Jansen1, O. Panferov2,3, U. Spank4, and C. Bernhofer4 F. Richter et al.
  • 1Department of Soil Science of Temperate Ecosystems, Georg-August-Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
  • 2Department of Bioclimatology, Georg-August-Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
  • 3Institute of Climatology and Climate Protection, University of Applied Sciences, Bingen am Rhein, Berlinstr. 109, 55411 Bingen am Rhein, Germany
  • 4Institute of Hydrology and Meteorology, Technische Universität Dresden, Pienner Str. 23, 01737 Tharandt, Germany

Abstract. Among the different bioenergy sources, short rotation coppices (SRC) with poplar and willow trees are one of the promising options in Europe. SRC provide not only woody biomass but also additional ecosystem services. However, a known shortcoming is the potentially lower groundwater recharge caused by the potentially higher evapotranspiration demand compared to annual crops. The complex feedbacks between vegetation cover and water cycle can be only correctly assessed by application of well-parameterised and calibrated numerical models. In the present study, the hydrological model system WaSim (Wasserhaushalts-Simulations-Model) is implemented for assessment of the water balance. The focus is the analysis of simulation uncertainties caused by the use of guidelines or transferred parameter sets from scientific literature compared to "actual" parameterisations derived from local measurements of leaf area index (LAI), stomatal resistance (Rsc) and date of leaf unfolding (LU). The analysis showed that uncertainties in parameterisation of vegetation lead to implausible model results. LAI, Rsc and LU are the most sensitive plant physiological parameters concerning the effects of enhanced SRC cultivation on water budget or groundwater recharge. Particularly sensitive is the beginning of the growing season, i.e. LU. When this estimation is wrong, the accuracy of LAI and Rsc description plays a minor role. Our analyses illustrate that the use of locally measured vegetation parameters, like maximal LAI, and meteorological variables, like air temperature, to estimate LU give better results than literature data or data from remote network stations. However, the direct implementation of locally measured data is not always advisable or possible. Regarding Rsc, the adjustment of local measurements gives the best model evaluation. For local and accurate studies, measurements of model sensitive parameters like LAI, Rsc and LU are valuable information. The derivation of these model parameters based on local measurements shows the best model fit. Additionally, the adjusted seasonal course of LAI and Rsc is less sensitive to different estimates for LU. Different parameterisations, as they are all eligible either from local measurements or scientific literature, can result in modelled ground water recharge to be present or completely absent in certain years under poplar SRC.

Publications Copernicus
Short summary
Predicting hydrological effects of land use change, e.g. enhanced cultivation of short rotation coppices, requires an adequate parameterisation. Measurements and modelling results show that leaf area index, stomatal resistance and in particular start and length of growing season are most sensitive to soil hydrological quantities, like ground water recharge (GWR). Only simulations over 30 years, reflecting long-term climate variability, show even zero GWR, especially in succeeding dry years.
Predicting hydrological effects of land use change, e.g. enhanced cultivation of short rotation...