Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 10 | Copyright

Special issue: HYPER Droughts (HYdrological Precipitation – Evaporation...

Hydrol. Earth Syst. Sci., 19, 4081-4098, 2015
https://doi.org/10.5194/hess-19-4081-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Oct 2015

Research article | 08 Oct 2015

Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale

T. I. E. Veldkamp1, S. Eisner2, Y. Wada3,4,5, J. C. J. H. Aerts1, and P. J. Ward1 T. I. E. Veldkamp et al.
  • 1Institute for Environmental Studies (IVM), VU Amsterdam, Amsterdam, the Netherlands
  • 2Center for Environmental Systems Research, University of Kassel, Kassel, Germany
  • 3Center for Climate Systems Research, Columbia University, New York, USA
  • 4NASA Goddard Institute for Space Studies, New York, USA
  • 5Department of Physical Geography, Utrecht University, Utrecht, the Netherlands

Abstract. Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño–Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability.

We show that over the time period 1961–2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4 % of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6 % (CTA: consumption-to-availability ratio) and 41.1 % (WCI: water crowding index) of the global population, whilst only 11.4 % (CTA) and 15.9 % (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events.

Given the correlations found between ENSO and water availability and scarcity conditions, and the relative developments of water scarcity impacts under changing socioeconomic conditions, we suggest that there is potential for ENSO-based adaptation and risk reduction that could be facilitated by more research on this emerging topic.

Publications Copernicus
Special issue
Download
Short summary
Freshwater shortage is one of the most important risks, partially driven by climate variability. Here we present a first global scale sensitivity assessment of water scarcity events to El Niño-Southern Oscillation, the most dominant climate variability signal. Given the found correlations, covering a large share of the global land area, and seen the developments of water scarcity impacts under changing socioeconomic conditions, we show that there is large potential for ENSO-based risk reduction.
Freshwater shortage is one of the most important risks, partially driven by climate variability....
Citation
Share