Articles | Volume 19, issue 10
https://doi.org/10.5194/hess-19-4257-2015
https://doi.org/10.5194/hess-19-4257-2015
Research article
 | 
22 Oct 2015
Research article |  | 22 Oct 2015

Reconstructing the natural hydrology of the San Francisco Bay–Delta watershed

P. Fox, P. H. Hutton, D. J. Howes, A. J. Draper, and L. Sears

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023,https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022,https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Improving predictions of land-atmosphere interactions based on a hybrid data assimilation and machine learning method
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-379,https://doi.org/10.5194/hess-2022-379, 2022
Preprint under review for HESS
Short summary
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022,https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022,https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary

Cited articles

Alexander, B. S., Mendell, G. H., and Davidson, G.: Report of the Board of Commissioners on the Irrigation of the San Joaquin, Tulare, and Sacramento Valleys of the State of California, 43rd Congress, 1st Session, House of Representation, Ex. Doc. No. 290, Government Printing Office, Washington, 1874.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, Food and Agricultural Organization of the United Nations, Rome, Italy, 1998.
Allen, R. G., Walter, I. A., Elliott, R. L., Howell, T. A., Itenfisu, D., Jensen, M. E., and Snyder, R. L. (Eds.): The ASCE Standardized Reference Evapotranspiration Equation, ASCE, Reston, Virginia, 2005.
Anonymous: Commissioners and Surveyor-General's Instructions to the County Surveyors of California, California State Printing Office, Sacramento, CA, USA, 1861.
Armstrong, C. F. and Stidd, C. K.: A moisture–balance profile on the Sierra Nevada, J. Hydrol., 5, 258–268, 1967.
Download
Short summary
The development of California was facilitated by redistributing water from the natural landscape to other uses. This development was accompanied by declines in native aquatic species, which have been attributed to reductions in Delta outflow. By reconstructing the natural landscape and using water balances to estimate natural Delta outflow, this flow is shown to be consistent with current outflow on a long-term annual average basis.