Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 10 | Copyright
Hydrol. Earth Syst. Sci., 19, 4275-4291, 2015
https://doi.org/10.5194/hess-19-4275-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Oct 2015

Research article | 22 Oct 2015

Correction of real-time satellite precipitation with satellite soil moisture observations

W. Zhan1, M. Pan1, N. Wanders1,2, and E. F. Wood1 W. Zhan et al.
  • 1Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
  • 2Department of Physical Geography, Utrecht University, Utrecht, the Netherlands

Abstract. Rainfall and soil moisture are two key elements in modeling the interactions between the land surface and the atmosphere. Accurate and high-resolution real-time precipitation is crucial for monitoring and predicting the onset of floods, and allows for alert and warning before the impact becomes a disaster. Assimilation of remote sensing data into a flood-forecasting model has the potential to improve monitoring accuracy. Space-borne microwave observations are especially interesting because of their sensitivity to surface soil moisture and its change. In this study, we assimilate satellite soil moisture retrievals using the Variable Infiltration Capacity (VIC) land surface model, and a dynamic assimilation technique, a particle filter, to adjust the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) real-time precipitation estimates. We compare updated precipitation with real-time precipitation before and after adjustment and with NLDAS gauge-radar observations. Results show that satellite soil moisture retrievals provide additional information by correcting errors in rainfall bias. The assimilation is most effective in the correction of medium rainfall under dry to normal surface conditions, while limited/negative improvement is seen over wet/saturated surfaces. On the other hand, high-frequency noises in satellite soil moisture impact the assimilation by increasing rainfall frequency. The noise causes larger uncertainty in the false-alarmed rainfall over wet regions. A threshold of 2 mm day−1 soil moisture change is identified and applied to the assimilation, which masked out most of the noise.

Publications Copernicus
Download
Citation
Share