Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 11
Hydrol. Earth Syst. Sci., 19, 4559–4579, 2015
https://doi.org/10.5194/hess-19-4559-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 4559–4579, 2015
https://doi.org/10.5194/hess-19-4559-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Nov 2015

Research article | 17 Nov 2015

Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case

I. G. Pechlivanidis and B. Arheimer I. G. Pechlivanidis and B. Arheimer
  • Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Abstract. The scientific initiative Prediction in Ungauged Basins (PUB) (2003–2012 by the IAHS) put considerable effort into improving the reliability of hydrological models to predict flow response in ungauged rivers. PUB's collective experience advanced hydrologic science and defined guidelines to make predictions in catchments without observed runoff data. At present, there is a raised interest in applying catchment models to large domains and large data samples in a multi-basin manner, to explore emerging spatial patterns or learn from comparative hydrology. However, such modelling involves additional sources of uncertainties caused by the inconsistency between input data sets, i.e. particularly regional and global databases. This may lead to inaccurate model parameterisation and erroneous process understanding. In order to bridge the gap between the best practices for flow predictions in single catchments and multi-basins at the large scale, we present a further developed and slightly modified version of the recommended best practices for PUB by Takeuchi et al. (2013). By using examples from a recent HYPE (Hydrological Predictions for the Environment) hydrological model set-up across 6000 subbasins for the Indian subcontinent, named India-HYPE v1.0, we explore the PUB recommendations, identify challenges and recommend ways to overcome them. We describe the work process related to (a) errors and inconsistencies in global databases, unknown human impacts, and poor data quality; (b) robust approaches to identify model parameters using a stepwise calibration approach, remote sensing data, expert knowledge, and catchment similarities; and (c) evaluation based on flow signatures and performance metrics, using both multiple criteria and multiple variables, and independent gauges for "blind tests". The results show that despite the strong physiographical gradient over the subcontinent, a single model can describe the spatial variability in dominant hydrological processes at the catchment scale. In addition, spatial model deficiencies are used to identify potential improvements of the model concept. Eventually, through simultaneous calibration using numerous gauges, the median Kling–Gupta efficiency for river flow increased from 0.14 to 0.64. We finally demonstrate the potential of multi-basin modelling for comparative hydrology using PUB, by grouping the 6000 subbasins based on similarities in flow signatures to gain insights into the spatial patterns of flow generating processes at the large scale.

Publications Copernicus
Download
Short summary
We modify the recommendations for flow predictions in ungauged catchments to address the challenges at the large scale. We use examples from the HYPE hydrological model set-up across 6000 subbasins for the Indian subcontinent. Multi-basin modelling reveals the spatial patterns of catchment functioning and dominant flow processes across the hydroclimatic gradient. The model set-up procedure according to the PUB recommendations brought insights into where the single model structure is inadequate.
We modify the recommendations for flow predictions in ungauged catchments to address the...
Citation