Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 19, issue 11 | Copyright
Hydrol. Earth Syst. Sci., 19, 4653-4672, 2015
https://doi.org/10.5194/hess-19-4653-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Nov 2015

Research article | 25 Nov 2015

The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat

G. Boulet1,2, B. Mougenot1,2, J.-P. Lhomme3, P. Fanise1, Z. Lili-Chabaane2, A. Olioso4,5, M. Bahir1,4,5, V. Rivalland1, L. Jarlan1, O. Merlin1, B. Coudert1, S. Er-Raki6, and J.-P. Lagouarde7 G. Boulet et al.
  • 1CESBIO – UMR 5126 UPS, CNRS, CNES, IRD, Toulouse, France
  • 2Département Génie Rural des Eaux et Forêts, Institut National Agronomique de Tunisie/Université de Carthage, Tunis, Tunisia
  • 3IRD, UMR LISAH, Montpellier, France
  • 4INRA, EMMAH – UMR1114, Avignon, France
  • 5UAPV, EMMAH – UMR1114, Avignon, France
  • 6LP2M2E, FST, Université Cadi Ayyad, Marrakech, Morocco
  • 7INRA, UMR 1391 ISPA, 33140 Villenave d'Ornon, France

Abstract. Evapotranspiration is an important component of the water cycle, especially in semi-arid lands. A way to quantify the spatial distribution of evapotranspiration and water stress from remote-sensing data is to exploit the available surface temperature as a signature of the surface energy balance. Remotely sensed energy balance models enable one to estimate stress levels and, in turn, the water status of continental surfaces. Dual-source models are particularly useful since they allow derivation of a rough estimate of the water stress of the vegetation instead of that of a soil–vegetation composite. They either assume that the soil and the vegetation interact almost independently with the atmosphere (patch approach corresponding to a parallel resistance scheme) or are tightly coupled (layer approach corresponding to a series resistance scheme). The water status of both sources is solved simultaneously from a single surface temperature observation based on a realistic underlying assumption which states that, in most cases, the vegetation is unstressed, and that if the vegetation is stressed, evaporation is negligible. In the latter case, if the vegetation stress is not properly accounted for, the resulting evaporation will decrease to unrealistic levels (negative fluxes) in order to maintain the same total surface temperature. This work assesses the retrieval performances of total and component evapotranspiration as well as surface and plant water stress levels by (1) proposing a new dual-source model named Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) in two versions (parallel and series resistance networks) based on the TSEB (Two-Source Energy Balance model, Norman et al., 1995) model rationale as well as state-of-the-art formulations of turbulent and radiative exchange, (2) challenging the limits of the underlying hypothesis for those two versions through a synthetic retrieval test and (3) testing the water stress retrievals (vegetation water stress and moisture-limited soil evaporation) against in situ data over contrasted test sites (irrigated and rainfed wheat). We demonstrated with those two data sets that the SPARSE series model is more robust to component stress retrieval for this cover type, that its performance increases by using bounding relationships based on potential conditions (root mean square error lowered by up to 11 W m−2 from values of the order of 50–80 W m−2), and that soil evaporation retrieval is generally consistent with an independent estimate from observed soil moisture evolution.

Publications Copernicus
Download
Short summary
The paper presents a new model (SPARSE) to estimate total evapotranspiration as well as its components (evaporation and transpiration) from remote-sensing data in the thermal infra-red domain. The limits of computing two unknowns (evaporation and transpiration) out of one piece of information (one surface temperature) are assessed theoretically. The model performance in retrieving the components as well as the water stress is assessed for two wheat crops (one irrigated and one rainfed).
The paper presents a new model (SPARSE) to estimate total evapotranspiration as well as its...
Citation
Share