Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 19, issue 12 | Copyright
Hydrol. Earth Syst. Sci., 19, 4845-4858, 2015
https://doi.org/10.5194/hess-19-4845-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Dec 2015

Research article | 18 Dec 2015

Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments

E. S. Garcia1 and C. L. Tague2 E. S. Garcia and C. L. Tague
  • 1Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
  • 2Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA

Abstract. In the winter-wet, summer-dry forests of the western United States, total annual evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated drainage and storage properties, however, may strongly influence these relationships between climate and ET. We use a physically based process model to evaluate how plant accessible water storage capacity (AWC) and rates of drainage influence model estimates of ET–climate relationships for three snow-dominated, mountainous catchments with differing precipitation regimes. Model estimates show that total annual precipitation is a primary control on inter-annual variation in ET across all catchments and that the timing of recharge is a second-order control. Low AWC, however, increases the sensitivity of annual ET to these climate drivers by 3 to 5 times in our two study basins with drier summers. ET–climate relationships in our Colorado basin receiving summer precipitation are more stable across subsurface drainage and storage characteristics. Climate driver–ET relationships are most sensitive to subsurface storage (AWC) and drainage parameters related to lateral redistribution in the relatively dry Sierra site that receives little summer precipitation. Our results demonstrate that uncertainty in geophysically mediated storage and drainage properties can strongly influence model estimates of watershed-scale ET responses to climate variation and climate change. This sensitivity to uncertainty in geophysical properties is particularly true for sites receiving little summer precipitation. A parallel interpretation of this parameter sensitivity is that spatial variation in storage and drainage properties are likely to lead to substantial within-watershed plot-scale differences in forest water use and drought stress.

Publications Copernicus
Download
Short summary
In forests of the western United States, annual evapotranspiration (ET) varies with precipitation and temperature; geologically mediated drainage and storage properties may influence the relationship between climate and ET. A process-based model is used to evaluate how water storage capacity influences model estimates of ET-climate relationships for three snow-dominated basins. Results show that uncertainty in subsurface properties can strongly influence model estimates of watershed-scale ET.
In forests of the western United States, annual evapotranspiration (ET) varies with...
Citation
Share