Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 19, 823-837, 2015
https://doi.org/10.5194/hess-19-823-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
06 Feb 2015
A high-resolution global-scale groundwater model
I. E. M. de Graaf1, E. H. Sutanudjaja1, L. P. H. van Beek1, and M. F. P. Bierkens1,2 1Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
2Unit Soil and Groundwater Systems, Deltares, Utrecht, the Netherlands
Abstract. Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

Citation: de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H., and Bierkens, M. F. P.: A high-resolution global-scale groundwater model, Hydrol. Earth Syst. Sci., 19, 823-837, https://doi.org/10.5194/hess-19-823-2015, 2015.
Publications Copernicus
Download
Short summary
In this paper we present a high-resolution global-scale groundwater model of an upper aquifer. An equilibrium water table at its natural state is constructed. Aquifer parameterization is based on available global datasets on lithology and conductivity combined with estimated aquifer thickness. The results showed groundwater levels are well simulated for many regions of the world. Simulated flow paths showed the relevance of including lateral groundwater flows in global scale hydrological models.
In this paper we present a high-resolution global-scale groundwater model of an upper aquifer....
Share