Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 19, issue 2
Hydrol. Earth Syst. Sci., 19, 877–891, 2015
https://doi.org/10.5194/hess-19-877-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 877–891, 2015
https://doi.org/10.5194/hess-19-877-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Feb 2015

Research article | 12 Feb 2015

Global trends in extreme precipitation: climate models versus observations

B. Asadieh and N. Y. Krakauer
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish as is (09 Jan 2015) by Pierre Gentine
Publications Copernicus
Download
Short summary
We present a systematic comparison of changes in historical extreme precipitation in station observations (HadEX2) and 15 climate models from the CMIP5 (as the largest and most recent sets of available observational and modeled data sets), on global and continental scales for 1901-2010, using both parametric (linear regression) and non-parametric (the Mann-Kendall as well as Sen’s slope estimator) methods, taking care to sample observations and models spatially and temporally in comparable ways.
We present a systematic comparison of changes in historical extreme precipitation in station...
Citation