Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 20, issue 3
Hydrol. Earth Syst. Sci., 20, 1133–1150, 2016
https://doi.org/10.5194/hess-20-1133-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Catchment co-evolution: space–time patterns and functional...

Hydrol. Earth Syst. Sci., 20, 1133–1150, 2016
https://doi.org/10.5194/hess-20-1133-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Mar 2016

Research article | 16 Mar 2016

Coevolution of volcanic catchments in Japan

Takeo Yoshida and Peter A. Troch
Viewed  
Total article views: 2,327 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,679 574 74 2,327 60 65
  • HTML: 1,679
  • PDF: 574
  • XML: 74
  • Total: 2,327
  • BibTeX: 60
  • EndNote: 65
Views and downloads (calculated since 24 Sep 2015)
Cumulative views and downloads (calculated since 24 Sep 2015)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 18 Sep 2019
Publications Copernicus
Download
Short summary
We derived indices of landscape properties as well as hydrological response and examined their relation with catchment age and climate. We found significant correlation between drainage density and baseflow index with age, but not with climate. We compared our data with data from volcanic catchments in Oregon and could confirm that baseflow index decreases with time, but also discovered that drainage density seems to stabilize after 2M years, after an initial increase due to landscape incision.
We derived indices of landscape properties as well as hydrological response and examined their...
Citation