Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Hydrol. Earth Syst. Sci., 20, 1703-1717, 2016
https://doi.org/10.5194/hess-20-1703-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
11 May 2016
An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia
Carly R. Tozer1,2, Tessa R. Vance1, Jason L. Roberts3,1, Anthony S. Kiem2, Mark A. J. Curran3,1, and Andrew D. Moy3,1 1Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania 7001, Australia
2Centre for Water, Climate and Land Use, University of Newcastle, Callaghan, NSW 2308, Australia
3Australian Antarctic Division, Kingston, Tasmania 7050, Australia
Abstract. Paleoclimate research indicates that the Australian instrumental climate record (∼ 100 years) does not cover the full range of hydroclimatic variability that is possible. To better understand the implications of this on catchment-scale water resources management, a 1013-year (1000–2012 common era (CE)) annual rainfall reconstruction was produced for the Williams River catchment in coastal eastern Australia. No high-resolution paleoclimate proxies are located in the region and so a teleconnection between summer sea salt deposition recorded in ice cores from East Antarctica and rainfall variability in eastern Australia was exploited to reconstruct the catchment-scale rainfall record. The reconstruction shows that significantly longer and more frequent wet and dry periods were experienced in the preinstrumental compared to the instrumental period. This suggests that existing drought and flood risk assessments underestimate the true risks due to the reliance on data and statistics obtained from only the instrumental record. This raises questions about the robustness of existing water security and flood protection measures and has serious implications for water resources management, infrastructure design and catchment planning. The method used in this proof of concept study is transferable and enables similar insights into the true risk of flood/drought to be gained for other paleoclimate proxy poor regions for which suitable remote teleconnected proxies exist. This will lead to improved understanding and ability to deal with the impacts of multi-decadal to centennial hydroclimatic variability.
Please read the corrigendum first before accessing the article.


Citation: Tozer, C. R., Vance, T. R., Roberts, J. L., Kiem, A. S., Curran, M. A. J., and Moy, A. D.: An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia, Hydrol. Earth Syst. Sci., 20, 1703-1717, https://doi.org/10.5194/hess-20-1703-2016, 2016.
Publications Copernicus
Download
Short summary
A 1013-year annual rainfall reconstruction was developed for the Williams River catchment in coastal eastern Australia, based on a linear relationship between sea salt deposition in East Antarctica and rainfall in eastern Australia. The reconstruction allows for the instrumental climate record (~ 100 years) to be assessed in the context of millennial climate variability, allowing for better characterisation of flood and drought risk.
A 1013-year annual rainfall reconstruction was developed for the Williams River catchment in...
Share