Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 20, issue 1
Hydrol. Earth Syst. Sci., 20, 257–277, 2016
https://doi.org/10.5194/hess-20-257-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 257–277, 2016
https://doi.org/10.5194/hess-20-257-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Jan 2016

Research article | 18 Jan 2016

Time series of tritium, stable isotopes and chloride reveal short-term variations in groundwater contribution to a stream

C. Duvert1, M. K. Stewart2, D. I. Cendón3,4, and M. Raiber5 C. Duvert et al.
  • 1Queensland University of Technology, Brisbane, QLD 4001, Australia
  • 2Aquifer Dynamics Ltd & GNS Science, P.O. Box 30368, Lower Hutt, 5040, New Zealand
  • 3Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
  • 4School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
  • 5CSIRO Land & Water, Dutton Park, Brisbane, QLD 4102, Australia

Abstract. A major limitation to the assessment of catchment transit time (TT) stems from the use of stable isotopes or chloride as hydrological tracers, because these tracers are blind to older contributions. Yet, accurately capturing the TT of the old water fraction is essential, as is the assessment of its temporal variations under non-stationary catchment dynamics. In this study we used lumped convolution models to examine time series of tritium, stable isotopes and chloride in rainfall, streamwater and groundwater of a catchment located in subtropical Australia. Our objectives were to determine the different contributions to streamflow and their variations over time, and to understand the relationship between catchment TT and groundwater residence time. Stable isotopes and chloride provided consistent estimates of TT in the upstream part of the catchment. A young component to streamflow was identified that was partitioned into quickflow (mean TT  ≈  2 weeks) and discharge from the fractured igneous rocks forming the headwaters (mean TT  ≈  0.3 years). The use of tritium was beneficial for determining an older contribution to streamflow in the downstream area. The best fits between measured and modelled tritium activities were obtained for a mean TT of 16–25 years for this older groundwater component. This was significantly lower than the residence time calculated for groundwater in the alluvial aquifer feeding the stream downstream ( ≈  76–102 years), emphasising the fact that water exiting the catchment and water stored in it had distinctive age distributions. When simulations were run separately on each tritium streamwater sample, the TT of old water fraction varied substantially over time, with values averaging 17 ± 6 years at low flow and 38 ± 15 years after major recharge events. This counterintuitive result was interpreted as the flushing out of deeper, older waters shortly after recharge by the resulting pressure wave propagation. Overall, this study shows the usefulness of collecting tritium data in streamwater to document short-term variations in the older component of the TT distribution. Our results also shed light on the complex relationships between stored water and water in transit, which are highly non-linear and remain poorly understood.

Publications Copernicus
Download
Short summary
The transit time of water is a key indicator of hydrological processes at the catchment scale. Our results suggest that the use of tritium time series in streamwater can be highly valuable for assessing the temporal variations in the transit time of older groundwater contributions to streamflow. We also show that, shortly after high flow events, the transit time of the old water fraction increases and tends to approach the groundwater residence time.
The transit time of water is a key indicator of hydrological processes at the catchment scale....
Citation