Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 20, issue 9
Hydrol. Earth Syst. Sci., 20, 3765–3775, 2016
https://doi.org/10.5194/hess-20-3765-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 3765–3775, 2016
https://doi.org/10.5194/hess-20-3765-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Sep 2016

Research article | 12 Sep 2016

Estimating spatially distributed soil texture using time series of thermal remote sensing – a case study in central Europe

Benjamin Müller et al.
Data sets

ASTER Level 1A data EOSDIS - NASA's Earth Observing System Data and Information System http://reverb.echo.nasa.gov/reverb/

CAOS - Catchments as Organised Systems CAOS http://www.caos-project.de

Publications Copernicus
Download
Short summary
A technology for the spatial derivation of soil texture classes is presented. Information about soil texture is key for predicting the local and regional hydrological cycle. It is needed for the calculation of soil water movement, the share of surface runoff, the evapotranspiration rate and others. Nevertheless, the derivation of soil texture classes is expensive and time-consuming. The presented technique uses soil samples and remotely sensed data for estimating their spatial distribution.
A technology for the spatial derivation of soil texture classes is presented. Information about...
Citation