Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 20, issue 9
Hydrol. Earth Syst. Sci., 20, 3765–3775, 2016
https://doi.org/10.5194/hess-20-3765-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 3765–3775, 2016
https://doi.org/10.5194/hess-20-3765-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Sep 2016

Research article | 12 Sep 2016

Estimating spatially distributed soil texture using time series of thermal remote sensing – a case study in central Europe

Benjamin Müller et al.
Related authors  
PAttern REtrieval or deNegation Testing Scheme (PARENTS) v.1.0 – Identifying the degree of presence of given patterns in spatial time series
Benjamin Müller, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-563,https://doi.org/10.5194/hess-2019-563, 2019
Manuscript under review for HESS
Short summary
ESMValTool v2.0 – Extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Phillippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay V. Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, Francois Massonnet, Benjamin Müller, Amarjiit Pandde, Nuria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-291,https://doi.org/10.5194/gmd-2019-291, 2019
Manuscript under review for GMD
Short summary
Identification of catchment functional units by time series of thermal remote sensing images
B. Müller, M. Bernhardt, and K. Schulz
Hydrol. Earth Syst. Sci., 18, 5345–5359, https://doi.org/10.5194/hess-18-5345-2014,https://doi.org/10.5194/hess-18-5345-2014, 2014
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Theory development
Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Wells, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019,https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019,https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Hydrological signatures describing the translation of climate seasonality into streamflow seasonality
Sebastian J. Gnann, Nicholas J. K. Howden, and Ross A. Woods
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-463,https://doi.org/10.5194/hess-2019-463, 2019
Revised manuscript accepted for HESS
A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019,https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Trajectories of nitrate input and output in three nested catchments along a land use gradient
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019,https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Cited articles  
AAFC: Agriculture and Agri-Food Canada, The National Soil DataBase (NSDB), http://sis.agr.gc.ca/cansis/nsdb/index.html, last access: 17 July 2015.
Ahmed, Z. and Iqbal, J.: Evaluation of Landsat TM5 Multispectral Data for Automated Mapping of Surface Soil Texture and Organic Matter in GIS, Eur. J. Remote Sens., 47, 557–573, 2014.
Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40–79, https://doi.org/10.1214/09-SS054, 2010.
Betts, A. K., Ball, J. H., Beljaars, A. C. M., Miller, M. J., and Viterbo, P. A.: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives, J. Geophys. Res., 101, 7209–7225, 1996.
Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, J. R. Stat. Soc. B, 26, 211–252, 1964.
Publications Copernicus
Download
Short summary
A technology for the spatial derivation of soil texture classes is presented. Information about soil texture is key for predicting the local and regional hydrological cycle. It is needed for the calculation of soil water movement, the share of surface runoff, the evapotranspiration rate and others. Nevertheless, the derivation of soil texture classes is expensive and time-consuming. The presented technique uses soil samples and remotely sensed data for estimating their spatial distribution.
A technology for the spatial derivation of soil texture classes is presented. Information about...
Citation