Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 20, issue 1
Hydrol. Earth Syst. Sci., 20, 39–54, 2016
https://doi.org/10.5194/hess-20-39-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 39–54, 2016
https://doi.org/10.5194/hess-20-39-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Jan 2016

Research article | 15 Jan 2016

Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

W. A. Timms et al.
Viewed  
Total article views: 1,544 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
894 539 111 1,544 222 52 54
  • HTML: 894
  • PDF: 539
  • XML: 111
  • Total: 1,544
  • Supplement: 222
  • BibTeX: 52
  • EndNote: 54
Views and downloads (calculated since 09 Mar 2015)
Cumulative views and downloads (calculated since 09 Mar 2015)
Cited  
Saved (final revised paper)  
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 13 Dec 2019
Publications Copernicus
Download
Short summary
Low permeability sediments and rock can leak slowly, yet can act as important barriers to flow for resource development and for waste sequestration. Relatively rapid and reliable hydraulic tests of "tight" geological materials are possible by accelerating gravity. Results from geotechnical centrifuge testing of drill core and in situ pore pressure monitoring were compared with a regional flow model, and considered in the context of inherent geological variability at site and formation scale.
Low permeability sediments and rock can leak slowly, yet can act as important barriers to flow...
Citation