Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 20, issue 10
Hydrol. Earth Syst. Sci., 20, 4177-4190, 2016
https://doi.org/10.5194/hess-20-4177-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 4177-4190, 2016
https://doi.org/10.5194/hess-20-4177-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Oct 2016

Research article | 17 Oct 2016

Describing the interannual variability of precipitation with the derived distribution approach: effects of record length and resolution

Claudio I. Meier et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (11 Mar 2016) by Erwin Zehe
AR by Jorge Sebastian Moraga on behalf of the Authors (15 Jun 2016)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (15 Jun 2016) by Erwin Zehe
RR by Günter Blöschl (19 Jun 2016)
RR by Anonymous Referee #2 (13 Jul 2016)
ED: Publish subject to minor revisions (Editor review) (01 Aug 2016) by Erwin Zehe
AR by Jorge Sebastian Moraga on behalf of the Authors (11 Aug 2016)  Author's response    Manuscript
ED: Publish as is (12 Aug 2016) by Erwin Zehe
Publications Copernicus
Download
Short summary
We show that the derived distribution approach is able to characterize the interannual variability of precipitation much better than fitting a probabilistic model to annual rainfall totals, as long as continuously gauged data are available. The method is a useful tool for describing temporal changes in the distribution of annual rainfall, as it works for records as short as 5 years, and therefore does not require any stationarity assumption over long periods.
We show that the derived distribution approach is able to characterize the interannual...
Citation
Share