Articles | Volume 20, issue 10
https://doi.org/10.5194/hess-20-4177-2016
https://doi.org/10.5194/hess-20-4177-2016
Research article
 | 
17 Oct 2016
Research article |  | 17 Oct 2016

Describing the interannual variability of precipitation with the derived distribution approach: effects of record length and resolution

Claudio I. Meier, Jorge Sebastián Moraga, Geri Pranzini, and Peter Molnar

Related authors

El Niño Southern Oscillation (ENSO)-induced hydrological anomalies in central Chile
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234,https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Uncertainty analysis
Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022,https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022,https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Disentangling sources of future uncertainties for water management in sub-Saharan river basins
Alessandro Amaranto, Dinis Juizo, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 26, 245–263, https://doi.org/10.5194/hess-26-245-2022,https://doi.org/10.5194/hess-26-245-2022, 2022
Short summary
Possibilistic response surfaces: incorporating fuzzy thresholds into bottom-up flood vulnerability analysis
Thibaut Lachaut and Amaury Tilmant
Hydrol. Earth Syst. Sci., 25, 6421–6435, https://doi.org/10.5194/hess-25-6421-2021,https://doi.org/10.5194/hess-25-6421-2021, 2021
Short summary
Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment
Lila Collet, Shaun Harrigan, Christel Prudhomme, Giuseppe Formetta, and Lindsay Beevers
Hydrol. Earth Syst. Sci., 22, 5387–5401, https://doi.org/10.5194/hess-22-5387-2018,https://doi.org/10.5194/hess-22-5387-2018, 2018
Short summary

Cited articles

Barlow, M., Nigam, S., and Berbery, E. H.: ENSO, Pacific decadal variability, and US summertime precipitation, drought, and streamflow, J. Climate, 14, 2105–2128, 2001.
Benjamin, J. R. and Cornell, C. A.: Probability, Statistics, and Decision for Civil Engineers, McGraw-Hill, New York, 1970.
Dai, A. G.: Drought under global warming: a review, Wiley Interdisc. Rev. Climate Change, 2, 45–65, 2011.
Dai, A. G., Trenberth, K. E., and Qian, T. T.: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 1117–1130, https://doi.org/10.1175/JHM-386.1, 2004.
Díaz-Granados, M. A., Valdés, J. B., and Bras, R. L.: A physically based flood frequency distribution, Water Resour. Res., 20, 995–1002, 1984.
Download
Short summary
We show that the derived distribution approach is able to characterize the interannual variability of precipitation much better than fitting a probabilistic model to annual rainfall totals, as long as continuously gauged data are available. The method is a useful tool for describing temporal changes in the distribution of annual rainfall, as it works for records as short as 5 years, and therefore does not require any stationarity assumption over long periods.