Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 20, issue 11
Hydrol. Earth Syst. Sci., 20, 4655–4671, 2016
https://doi.org/10.5194/hess-20-4655-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 4655–4671, 2016
https://doi.org/10.5194/hess-20-4655-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Nov 2016

Research article | 22 Nov 2016

Towards simplification of hydrologic modeling: identification of dominant processes

Steven L. Markstrom et al.
Related authors  
Parameter regionalization of a monthly water balance model for the conterminous United States
Andrew R. Bock, Lauren E. Hay, Gregory J. McCabe, Steven L. Markstrom, and R. Dwight Atkinson
Hydrol. Earth Syst. Sci., 20, 2861–2876, https://doi.org/10.5194/hess-20-2861-2016,https://doi.org/10.5194/hess-20-2861-2016, 2016
Short summary
mizuRoute version 1: a river network routing tool for a continental domain water resources applications
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016,https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019,https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues
Louise Mimeau, Michel Esteves, Isabella Zin, Hans-Werner Jacobi, Fanny Brun, Patrick Wagnon, Devesh Koirala, and Yves Arnaud
Hydrol. Earth Syst. Sci., 23, 3969–3996, https://doi.org/10.5194/hess-23-3969-2019,https://doi.org/10.5194/hess-23-3969-2019, 2019
Short summary
Global sinusoidal seasonality in precipitation isotopes
Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 3423–3436, https://doi.org/10.5194/hess-23-3423-2019,https://doi.org/10.5194/hess-23-3423-2019, 2019
Short summary
Improving hydrological projection performance under contrasting climatic conditions using spatial coherence through a hierarchical Bayesian regression framework
Zhengke Pan, Pan Liu, Shida Gao, Jun Xia, Jie Chen, and Lei Cheng
Hydrol. Earth Syst. Sci., 23, 3405–3421, https://doi.org/10.5194/hess-23-3405-2019,https://doi.org/10.5194/hess-23-3405-2019, 2019
Short summary
Assessing the influence of soil freeze–thaw cycles on catchment water storage–flux–age interactions using a tracer-aided ecohydrological model
Aaron Smith, Doerthe Tetzlaff, Hjalmar Laudon, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019,https://doi.org/10.5194/hess-23-3319-2019, 2019
Short summary
Cited articles  
Ali, G., Tetzlaff, D., Soulsby, C., McDonnell, J. and Capell, R.: A comparison of similarity indices for catchment classification using a cross-regional dataset, Adv. Water Resour., 40, 11–22, https://doi.org/10.1016/j.advwatres.2012.01.008, 2012.
Amorocho, J. and Hart, W. E.: A critique of current methods in hydrologic systems investigation, Trans. Am. Geophys. Un., 45, 307–321, 1964.
Archfield, S. A., Kennen, J. G., Carlisle, D. M., and Wolock, D. M.: An objective and parsimonious approach for classifying nature flow regimes at a continental scale, River Res. Appl., 30, 1166–1183, 2014.
Battaglin, W. A., Hay, L. E., and Markstrom, S. L.: Simulating the potential effects of climate change in two Colorado Basins and at two Colorado ski areas, Earth Interact., 15, 1–23, 2011.
Beven, K., Changing ideas in hydrology – The case of physically-based models, J. Hydrol., 105, 157–172, 1989.
Publications Copernicus
Download
Short summary
Results of this study indicate that it is possible to identify the influence of different hydrologic processes when simulating with a distributed-parameter hydrology model on the basis of parameter sensitivity analysis. Identification of these processes allows the modeler to focus on the more important aspects of the model input and output, which can simplify all facets of the hydrologic modeling application.
Results of this study indicate that it is possible to identify the influence of different...
Citation