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Abstract. It is generally accepted that the ground heat flux
accounts for a significant fraction of the surface energy bal-
ance. In land surface models, the ground heat flux is typically
estimated through a numerical solution of the heat conduc-
tion equation. Recent research has shown that this approach
introduces errors in the estimation of the energy balance. In
this paper, we calibrate a land surface model using a numeri-
cal solution of the heat conduction equation with four differ-
ent vertical spatial resolutions. It is found that the thermal
conductivity is the most sensitive parameter to the spatial
resolution. More importantly, the thermal conductivity val-
ues are directly related to the spatial resolution, thus render-
ing any physical interpretation of this value irrelevant. The
numerical solution is then replaced by an analytical solu-
tion. The results of the numerical and analytical solutions are
identical when fine spatial and temporal resolutions are used.
However, when using resolutions that are typical of land sur-
face models, significant differences are found. When using
the analytical solution, the ground heat flux is directly cal-
culated without calculating the soil temperature profile. The
calculation of the temperature at each node in the soil pro-
file is thus no longer required, unless the model contains pa-
rameters that depend on the soil temperature, which in this
study is not the case. The calibration is repeated, and ther-
mal conductivity values independent of the vertical spatial
resolution are obtained. The main conclusion of this study is
that care must be taken when interpreting land surface model
results that have been obtained using numerical ground heat
flux estimates. The use of exact analytical solutions, when
available, is recommended.

1 Introduction

An accurate estimate of the surface energy balance is very
important for climate modeling and numerical weather pre-
diction (Orth and Seneviratne, 2014). Of the three compo-
nents of the net radiation (the latent, sensible and ground heat
fluxes), the latent, and sensible heat fluxes provide a direct
coupling of the surface energy balance to the atmosphere.
For this reason, and also because typically the amplitude of
the ground heat flux is smaller than the turbulent fluxes, it
can be argued that climate and land surface modelers have
paid more attention to an accurate estimation of these fluxes
than to the ground heat flux.

However, Gentine et al. (2011) showed that the ground
heat flux acts as a high-pass filter because of the strong con-
trast in the soil- and air-heat capacities and thermal conduc-
tivities. Because numerical solutions of the heat conduction
equation can miss high-frequency fluctuations, errors in the
estimation of the surface energy balance may arise. Gentine
et al. (2012) showed that both models and measurements in-
deed miss these high-frequency fluctuations, and suggested
a correction method. Wang and Bou-Zeid (2012) also noted
the difficulty of accurately measuring ground heat fluxes,
and used an analytical solution of the heat diffusion equa-
tion to correct ground heat flux measurements. The problem
of ground heat flux estimation errors when using spatially
discrete data was also shown by Lunati et al. (2012), who de-
rived an analytical expression for the energy residual, using
a cosine boundary condition at the surface. The impact of the
ground heat flux parameterization on the energy balance was
also studied by Russell et al. (2015). They concluded that
the methods that allowed for the most variation in inputs be-
tween time steps outperformed the use of diurnal or constant
input values. Other studies that intercompared ground heat
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flux parameterization schemes can be found in Liebethal and
Foken (2007) and Venegas et al. (2013).

The problem with the numerical estimation of the ground
heat flux in land surface models is that their vertical spatial
resolution is too coarse to accurately estimate the soil tem-
perature gradient. This gradient can be very steep near the
soil surface, and errors in its estimation are compensated for
by adopting fictitious values for the soil thermal parameters
(the thermal conductivity and heat capacity). The use of an-
alytical solutions of the heat conduction equation can be ex-
pected to partially solve this problem.

A few attempts have been undertaken to derive analytical
solutions of the heat conduction equation that can easily be
implemented in land surface models. A number of solutions
can be found in Carslaw and Jaeger (1959). Shao et al. (1998)
solved the equation analytically and compared the solution to
temperature observations. Gao et al. (2003) derived an ana-
lytical solution as well, in order to determine thermal con-
ductivity values. Cichota et al. (2004) compared analytical
and numerical solutions for specific conditions. In an appli-
cation for large-scale modeling, Bennett et al. (2008) used
an analytical solution to estimate the global ground heat flux.
Another example can be found in Nunez et al. (2010), where
an analytical solution to model the ground heat flux was used.
Wang et al. (2012) derived an analytical solution using a sine
wave as a boundary condition, and Hu et al. (2016) used the
Fourier transform to derive an analytical solution. What these
studies have in common is that the solutions have been de-
rived for specific initial and boundary conditions. These so-
lutions also assume vertical homogeneity in the soil thermal
parameters, which is very rarely the case. This makes it very
difficult to apply them in land surface models, where an an-
alytical expression for the boundary conditions is impossible
to determine.

This paper focuses on the estimation of ground heat fluxes
and soil thermal properties using a land surface model. It is
first examined whether or not calibrated soil thermal proper-
ties are independent of the vertical spatial resolution of the
model, if the heat conduction equation is solved numerically.
An analytical solution of the heat conduction equation is then
derived, with temporally varying boundary conditions, which
can be applied in the model. Using this analytical solution in-
stead of the numerical approximation, the dependence of the
obtained soil thermal properties on the model spatial resolu-
tion is then investigated.

2 Site and data description

The data used in this study have been acquired in the frame-
work of the AgriSAR (AGRIcultural bio/geophysical re-
trieval from frequent repeat pass SAR (Synthetic Aperture
Radar) and optical imaging) 2006 campaign, for which the
test site was located in Mecklenburg-Vorpommern in north-
eastern Germany, approximately 150 km North of Berlin.

Table 1. The model parameters that need to be estimated.

Parameter Description Units

λ Pore size distribution index –
ψc Air entry pressure head m
Ks Saturated hydraulic conductivity mm h−1

f TOPMODEL exponential decay –
α Surface albedo –
κ Thermal conductivity W m−1 K−1

C Volumetric heat capacity J m−3 K−1

rc Surface resistance s m−1

fd Zero-plane displacement height fraction –
fh Roughness length for heat transfer fraction –
fv Roughness length for vapor transfer fraction –

More specifically, time-domain reflectometry (TDR)-based
soil moisture observations and Bowen ratio-energy bal-
ance (BREB)-based observations of the energy balance com-
ponents in a large winter wheat field were available from
20 April to 5 July 2006, with the Bowen ratio data containing
a number of gaps. The soil moisture was measured at a depth
of 5, 9, 15, and 25 cm. Meteorologic data from the weather
station at Görmin were available as well and can be used
as model forcing from 2005 onwards. All observations were
converted to an hourly time step by averaging the 10 min ob-
servations. For this study, all model simulations were per-
formed from 1 April 2006 to 5 July 2006, with an hourly
time step, unless differently stated. A detailed description of
this data set is given in Pauwels et al. (2008).

3 Model description

For the purpose of this study, the water and energy balance
model developed in Scheerlinck et al. (2009) and applied in
Pauwels and De Lannoy (2011) was used. Only a short de-
scription will be provided in this section, and for a full model
description we refer to Scheerlinck et al. (2009).

The model couples three physical equations. The move-
ment of soil water in the unsaturated zone is mod-
eled using a numerical solution of the Richards equation
(Richards, 1931), which results in the profile of the pressure
head (ψ ; m). This equation requires the evapotranspiration
as a boundary condition, which is calculated through an iter-
ation of the surface energy balance, resulting in the surface
skin temperature (Shuttleworth, 1992). This skin temperature
is then used as a boundary condition for a numerical solution
to the heat conduction equation, which results in the soil tem-
perature profile (T ; K).

Table 1 lists the eleven parameters that need to be esti-
mated. All parameters are constant in time. The soil param-
eters are also assumed to be homogeneous throughout the
profile. We acknowledge the fact that the model represents
a very strong simplification of the physical reality. However,
Scheerlinck et al. (2009) and Pauwels and De Lannoy (2011)
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obtained excellent results for the test site with this model. For
this reason, the model is deemed sufficiently realistic.

The model is applied with four different uniform vertical
spatial resolutions, namely, 0.01, 0.025, 0.05, and 0.1 m.

4 The parameter estimation algorithm: particle swarm
optimization

4.1 General description

The parameter estimation algorithm used in this paper, par-
ticle swarm optimization (PSO), is based on the collective
behavior of individuals in decentralized, self-organizing sys-
tems. These systems are created through a population of indi-
viduals that interact locally with each other and with the com-
munity. These interactions lead to global behavior, which can
result in the achievement of certain objectives. Examples of
such systems in nature are abundant: ant colonies, swarms of
birds, and schools of fish (Kennedy and Eberhart, 1995). For
a complete description of the algorithm we refer to Scheer-
linck et al. (2009).

4.2 Application in this study

In order to estimate the model parameters, observations of
the net radiation (Rn), latent heat flux (LE), sensible heat
flux (H ), ground heat flux (G), and soil moisture at 5 (θ1),
9 (θ2), 15 (θ3), and 25 cm (θ4) are used. The energy balance
variables are in W m−2, and the soil moisture values are di-
mensionless. A global objective function is calculated:

OF=
RMSERn

σRn

+
RMSELE

σLE
+

RMSEH

σH
+

RMSEG

σG

+
RMSEθ1

σθ1

+
RMSEθ2

σθ2

+
RMSEθ3

σθ3

+
RMSEθ4

σθ4

. (1)

The RMSE (root mean square error) values for each variable
are calculated as

RMSEx =

√√√√ 1
Nx

Nx∑
i=1

(xo(i)− xs(i))
2, (2)

where xo and xs are the observed and simulated values, re-
spectively, and σx is the standard deviation of the variable.
The global objective function is then minimized through the
application of PSO; 36 iterations are performed, ensuring
convergence of the algorithm, and the method is repeated
24 times. In order to ensure an analysis of the most opti-
mal parameter values, the parameter sets corresponding to
the eight lowest objective function values are retained for fur-
ther analysis. More specifically, the average parameter and
objective function values over these eight repetitions are ex-
amined.

5 Model calibration using the numerically calculated
ground heat flux

The model simulations resulting in the lowest objective func-
tion values for the different spatial resolutions will be an-
alyzed in this section. Figure 1 shows the comparison be-
tween the modeled energy balance components and the ob-
servations, for the spatial resolution of 0.01 m. Table 2 shows
the statistics of the linear regressions between the observed
and simulated energy balance components for the four spa-
tial resolutions. Figure 2 shows the comparison between the
modeled and the observed soil moisture values for the four
spatial resolutions. From these figures and tables, it can be
concluded that the model adequately simulated the water and
energy balance processes, and that the results are very similar
for the four different resolutions.

Table 3 shows the parameter values obtained from the
model calibration with a spatial resolution of 0.01, 0.025,
0.05, and 0.1 m. In order to determine which parameters are
significantly effected by the model spatial resolution, we ap-
plied a t test to the slopes from the linear regressions be-
tween the spatial resolution (x axis) and the parameter val-
ues (y axis), at the 95 % confidence level. In other words,
it is tested whether or not there is a significant linear trend
between1z (the model resolution) and the parameter values.
The objective function value has been found to change signif-
icantly with the resolution, as well as λ, ψc,Ks, f , and κ . All
the other parameters are not significantly dependent on the
spatial resolution. Of all the parameters affected by the reso-
lution, the parameter that shows the largest variation in val-
ues is the thermal conductivity κ , with the value at 1z= 0.1
being more than 4 times the value at 1z= 0.01 m. No other
parameter shows such a dramatic variation.

This result can be explained by the independence of the
albedo (α) and the parameters determining the roughness
lengths and zero-plane displacement height (fv, fh, and fd)
on the model spatial resolution. Since these parameters are
similar for the different resolutions, and the model is cali-
brated using Rn and the three heat fluxes, the resulting skin
temperatures are similar for the different resolutions. A simi-
lar skin temperature leads to similar sensible and ground heat
fluxes, as is proven in Table 2. The ground heat flux is defined
as the gradient in the soil temperature multiplied by the ther-
mal conductivity. Since the skin temperatures and the ground
heat fluxes (the latter used in the calibration) are equal, but
the model spatial resolution is different, the same ground heat
flux can only be obtained with a different thermal conduc-
tivity. Because the finest spatial resolution will result in the
steepest gradient of the soil temperature, it can be expected
that this will result in the lowest thermal conductivity value.
Table 3 shows that this is indeed the case. This renders the
physical interpretation of the thermal conductivity values im-
possible.
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Figure 1. Comparison between the modeled and the observed energy balance terms for the simulation with 1z= 0.01 m and a numerical
solution of the heat conduction equation.

6 Analytical solution of the heat conduction equation

6.1 Derivation of the solution

In order to solve the issue related to the dependence on the
grid resolution in the use of a numerical solution of the heat
conduction equation, we propose the use of an analytical so-
lution. First, the steady-state temperature profile for a con-
stant temperature at the bottom (Tb,0) and top (Tu,0) of the
profile is calculated. The depths of the top and bottom of the
profile are denoted as zu and zb, respectively. This solution
is then used as the initial condition for the same equation,
now with different bottom (Tb,1) and top (Tu,1) temperatures
as boundary conditions. It should be clarified that the time t
starts at zero for this new solution. The temperature profile
at time 1t is then calculated, and used as the initial condi-
tion for the same equation, again with different temperatures
(Tb,2 and Tu,2) as boundary conditions, and time starting at
zero. The solution at time 1t is then again used as the ini-
tial condition for the same equation with different boundary
conditions (Tb,3 and Tu,3) and time starting at zero, and so on.

Using this recursive methodology, the temperature profile for
the Mth time step can be written as

T (z, t)=
(
Tb,M− Tb,0

) z− zu

zb− zu
+
(
Tu,M− Tb,0

) z− zb

zu− zb

+ Tb,0+ 2
(
Tb,M− Tb,M−1

) ∞∑
n=1

(−1)n

xn
sin
(
z− zu

zb− zu
xn

)

eynt + 2
(
Tu,M− Tu,M−1

) ∞∑
n=1

(−1)n

xn
sin
(
z− zb

zu− zb
xn

)

eynt + 2
M−1∑
m=1

(
Tb,m− Tb,m−1

) ∞∑
n=1

(−1)n

xn
sin
(
z− zu

zb− zu
xn

)

eyn[t+(M−m−1)1t]
+ 2

M−1∑
m=1

(
Tu,m− Tu,m−1

) ∞∑
n=1

(−1)n

xn

sin
(
z− zb

zu− zb
xn

)
eyn[t+(M−m−1)1t], (3)
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Figure 2. Comparison between the modeled and the observed soil moisture values for the four different spatial resolutions, and a numerical
solution of the heat conduction equation. The model results for all four spatial resolutions are very similar and therefore difficult to distinguish.
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Table 2. Results of the linear regressions between the energy balance observations (x axis) and the simulations (y axis) for the simulations
with a numerical solution of the heat conduction equation. Units are W m−2.

1z (m) x y Slope Intercept R RMSE

Rn

0.01 93.0131 100.600 0.915466 15.4496 0.960075 51.7281
0.025 98.3913 0.914448 13.3357 0.960305 51.3149
0.05 95.7262 0.885549 13.3586 0.959990 51.7374
0.1 98.1781 0.902939 14.1929 0.959981 51.5954

LE

0.01 51.1184 69.1110 0.743908 31.0836 0.876901 63.5272
0.025 68.2937 0.713683 31.8114 0.867113 65.5609
0.05 65.2262 0.703889 29.2445 0.875136 63.4643
0.1 68.7922 0.739403 30.9951 0.875059 63.8546

H

0.01 37.5698 26.7574 0.624850 3.28193 0.749120 51.9420
0.025 25.4533 0.680222 −0.102505 0.757655 52.2046
0.05 26.0201 0.627508 2.44475 0.749720 52.0724
0.1 25.0475 0.617920 1.83234 0.752516 51.9020

G

0.01 4.32493 4.74172 0.502091 2.57021 0.701958 11.7627
0.025 4.64757 0.505230 2.46248 0.709196 11.6390
0.05 4.48276 0.483105 2.39337 0.703112 11.7385
0.1 4.34807 0.471090 2.31064 0.702533 11.7558

where Tu,M and Tb,M are the top and bottom temperatures
(boundary conditions) for the Mth time step, with M> 0,
and
xn = nπ

yn = −
x2
nκ

C(zu− zb)
2
. (4)

The surface ground heat flux then becomes

G(t)= κ
∂T

∂z

∣∣∣∣
z=zu

= κ
Tu,M− Tb,M

zu− zb

+
2κ

zu− zb

(
Tb,M− Tb,M−1

) ∞∑
n=1
(−1)neynt

+
2κ

zu− zb

(
Tu,M− Tu,M−1

) ∞∑
n=1

eynt

+
2κ

zu− zb

M−1∑
m=1

(
Tb,m− Tb,m−1

)
∞∑
n=1
(−1)neyn[t+(M−m−1)1t]

+
2κ

zu− zb

M−1∑
m=1

(
Tu,m− Tu,m−1

) ∞∑
n=1

eyn[t+(M−m−1)1t]. (5)

Appendix A describes the details of the derivation of this so-
lution as well as a methodology to apply these equations in a
computationally efficient manner.

It should be noted that with this analytical solution it is
no longer necessary to calculate the soil temperature pro-
file in order to calculate the ground heat flux. In the original
model formulation, the heat conduction equation needed to
be solved numerically, using the surface skin temperature as
a boundary condition, so the temperature of the first soil layer
could be calculated, and the ground heat flux could be com-
puted. However, Eq. (5) shows that this first layer tempera-
ture is no longer a variable in the calculation of the ground
heat flux. More complex land surface models may contain
parameters that depend on the soil temperature profile, and
thus would require the application of Eq. (3). However, in
this model, this is not required.

6.2 Comparison to the numerical solution

A synthetic test case is used to intercompare the analytical
and the numerical solutions. Equations (3) and (5) are applied
to a soil column of 1 m depth, with a thermal conductivity of
0.5 W m−1 K−1, and a heat capacity of 2.5× 106 J m−3 K−1.
In a first application, the spatial resolution is 0.01 m, and
the temporal resolution is 60 s. The numerical solution thus
needs to be applied 60 times per 1 h time step in this case.
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In a second application, a spatial resolution of 0.05 and a
temporal resolution of 1 h (3600 s) are used. The air temper-
ature values from the AgriSAR data set are used as boundary
conditions at the top of the profile, and the bottom bound-
ary conditions are assumed to linearly increase from 3 to 13◦

throughout the simulation.
Figure 3 shows the comparison of the temperature profiles

obtained from the numerical and analytical solutions, for the
test case with the fine spatial and temporal resolutions. An
excellent agreement between both methods can be seen. Fig-
ure 4 shows the same comparison for the coarse resolutions.
In many of these profiles, especially when sharp changes of
temperature occur, a strong deviation of the numerical so-
lution from the analytical solution can be observed. Since
these coarse resolutions correspond to values typically used
in land surface models, this leads to the conclusion that care
must be taken when interpreting ground heat flux simulations
from these models. This is demonstrated in Fig. 5, in which
the ground heat fluxes from both solutions are compared. For
the fine resolutions, a very good agreement is obtained, but
relatively strong differences between both methods are found
when coarse spatial and temporal resolutions are used.

7 Model calibration using the analytically calculated
ground heat flux

Figure 6 shows the comparison between the modeled energy
balance terms and the observations, for the simulations with
a spatial resolution of 0.01 m, and for the parameter set cor-
responding to the lowest objective function value. A similar
model performance as obtained with the numerical solution
of the heat conduction equation is achieved. Table 4 shows
the results of the linear regressions between the modeled en-
ergy balance terms and the observations, again obtained us-
ing the parameter values corresponding to the lowest objec-
tive function value, for the four different spatial resolutions.
Comparing Tables 4 to 2 leads to the conclusion that the en-
ergy balance terms are simulated practically identically when
the model uses the numerical or the analytical solution of the
heat conduction equation.

Figure 7 shows the comparison between the simulated soil
moisture values and the observations for the same parameter
sets. The comparison of Figs. 7 and 2 shows that the analyt-
ical and numerical solutions of the heat conduction equation
lead to very similar simulations of the soil water balance as
well.

Table 3 shows the average parameter values from the eight
retained PSO results. A slope t test for the linear regressions
between the spatial resolutions (x axis) and the parameter
values (y axis), at the 95 % confidence level, showed that
the objective function value changes significantly with the
resolution, as well as λ, ψc, Ks, and f . The only difference
with the results obtained with the numerical solution of the
heat conduction equation is that κ is no longer dependent on Ta
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Figure 3. Comparison between soil temperature profiles obtained using the numerical (+) and analytical (solid line) solutions for fine spatial
and temporal resolutions. Both solutions are very similar and therefore difficult to distinguish.
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Figure 4. Comparison between soil temperature profiles obtained using the numerical (+) and analytical (solid line) solutions for coarse
spatial and temporal resolutions.
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Table 4. Results of the linear regressions between the energy balance observations (x axis) and the simulations (y axis) for the simulations
with an analytical solution of the heat conduction equation. Units are W m−2.

1z (m) x y Slope Intercept R RMSE

Rn

0.01 93.0131 96.8658 0.907984 12.4113 0.960480 51.1205
0.025 97.1449 0.898791 13.5455 0.960282 51.3837
0.05 94.7747 0.889366 12.0521 0.960323 51.4117
0.1 100.133 0.922799 14.3001 0.960243 51.5437

LE

0.01 51.1184 69.4063 0.714640 32.8750 0.866276 66.0089
0.025 68.8670 0.731788 31.4592 0.875547 63.8527
0.05 66.1448 0.694242 30.6563 0.870716 64.6836
0.1 74.1509 0.776766 34.4438 0.873384 65.8182

H

0.01 37.5698 27.1087 0.672448 1.84497 0.755206 51.9761
0.025 27.8972 0.619521 4.62193 0.748911 51.6733
0.05 28.3065 0.654199 3.72834 0.751075 51.8782
0.1 25.7319 0.611265 2.76678 0.753079 51.6224

G

0.01 4.32493 0.341580 0.425440 −1.49842 0.680172 12.7680
0.025 0.357694 0.427544 −1.49141 0.674257 12.8336
0.05 0.338068 0.453744 −1.62434 0.673366 12.8353
0.1 0.323368 0.433978 −1.55356 0.671378 12.8747

Figure 5. Comparison of the resulting ground heat fluxes from the
fine and coarse spatial and temporal resolutions to the analytical
solution.

the spatial resolution. This could be expected, because the
expression for the ground heat flux is not dependent on the
temperature of the first soil layer, and thus on the spatial res-
olution. Furthermore, the value for the heat capacity (C) is
now less variable than when the ground heat flux was calcu-
lated numerically. More specifically, the standard deviation
has been reduced from 557 943 to 278 984 J m−3 K−1.

A pooled variance t test with 95 % confidence was applied
to the parameter values obtained with the analytical and nu-
merical solutions, to investigate which parameters are signif-
icantly different. This test showed that the only parameters
that are significantly different are the objective function value
and the heat capacity for all spatial resolutions, and the ther-
mal conductivity for a spatial resolution of 0.01 and 0.1 m.
Interestingly, the objective function values obtained with the
analytical solution are slightly higher than with the numerical
solution. However, since this objective function is composed
of eight rescaled RMSE values, the resulting model perfor-
mance is very similar, as is shown in Table 4 and Fig. 7. Since
the thermal conductivity values no longer depend on the spa-
tial resolution, on which they depended when the numerical
solution was used, it can be expected that the obtained ther-
mal conductivity values are different. Because of the differ-
ent manner of solving the heat conduction equation, it can
also be expected that the obtained soil-heat capacity values
are different as well.
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Figure 6. Comparison between the modeled and the observed energy balance terms for the simulation where 1z= 0.01 m and an analytical
solution of the heat conduction equation (Eq. A31).

The key conclusion from these simulations is that the over-
all model performance is independent of the type of calcu-
lation of the ground heat flux (analytically or numerically),
but that the results of the model calibration are more robust
(i.e., independent of the spatial resolution) if an analytical
solution of the ground heat flux equation is used.

8 Conclusions

A water and energy balance model, using a numerical
solution of the heat conduction equation, has been cali-
brated against energy balance and soil moisture observations,
for four different vertical spatial resolutions (0.01, 0.025,
0.05, and 0.1 m). It has been found that a number of param-
eters are dependent on this resolution, with the soil thermal

conductivity values showing the largest dependence. An ana-
lytical solution of the heat conduction equation has then been
derived, allowing for the bottom and top boundary conditions
(i.e., the bottom and surface skin temperatures) to vary over
time. Using this analytical solution has the advantage that
the soil temperature profile no longer needs to be computed.
For fine spatial and temporal resolutions the analytical and
numerical solutions cannot be distinguished, but different re-
sults are obtained for resolutions typically used in land sur-
face models. When the ground heat flux is calculated using
this analytical solution, and the model is calibrated, the ob-
tained soil thermal conductivity is no longer dependent on
the model spatial resolution. Furthermore, the variability in
the obtained soil-heat capacity is also strongly reduced.

www.hydrol-earth-syst-sci.net/20/4689/2016/ Hydrol. Earth Syst. Sci., 20, 4689–4706, 2016



4700 V. R. N. Pauwels and E. Daly: Ground heat flux parameterization

Figure 7. Comparison between the modeled and the observed soil moisture values for the four different spatial resolutions, and an analytical
solution of the heat conduction equation.

The results in this paper indicate that a similar model per-
formance is obtained when the ground heat flux is calcu-
lated analytically or numerically. However, the calibration is
more robust, and the parameter values more physically inter-
pretable, if the analytical solution is used. One must thus be
careful when using numerical solutions of the heat conduc-

tion equation in land surface models, and preference should
be given to the use of analytical solutions. The solution de-
rived in this paper does not allow for temporally varying soil
thermal properties, and ongoing research is focusing on the
derivation of an analytical solution that is straightforward to
apply in land surface models in these conditions.
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9 Data availability

The data can be accessed by contacting the AgriSAR
team: http://www.dlr.de/hr/desktopdefault.aspx/tabid-2511/
3772_read-5673/.
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Appendix A: Analytical solution

A1 The governing equation

A solution of the heat conduction–convection equation is de-
rived first, since this equation is analytically more straightfor-
ward to solve than the heat conduction equation because of
the easier inversion from the Laplace domain. Furthermore,
this general solution can be used for purposes outside the
scope of this paper. The limit case with zero convection is
then calculated. The governing equation is

∂CT

∂t
=
∂

∂z

[
κ
∂T

∂z

]
− vC

∂T

∂z
, (A1)

where t is time (s), z is the depth positive upwards (m), T is
the soil temperature (K), C is the volumetric heat capacity
of the soil (J m−3 K−1), κ is the soil thermal conductivity
(W m−1 K−1), and v is the water velocity (m s−1; positive
upwards). We assume the parameters are uniform throughout
the profile, so the equation becomes

C
∂T

∂t
= κ

∂2T

∂z2 − vC
∂T

∂z
. (A2)

A2 Steady-state solution

In order to obtain a realistic initial condition, we will calcu-
late the steady-state solution. For example, the profile at the
end of a very long, hot day. The equation becomes

κ
d2T

dz2 − vC
∂T

∂z
= 0, (A3)

with the boundary conditions{
T = Tb,0, z= zb
T = Tu,0, z= zu

. (A4)

The solution of this equation is

T = Tb,0+
(
Tb,0− Tu,0

) e vCκ z− e vCκ zb

e
vC
κ
zb − e

vC
κ
zu
. (A5)

A3 Solution for first new boundary conditions

We will use a constant time steps1t . For the first new bound-
ary conditions, we will use the steady-state profile as the ini-
tial condition. The boundary conditions are{
T = Tb,1, z= zb
T = Tu,1, z= zu

. (A6)

We will solve this equation through a Laplace transform. We
will denote the transform of T (z, t) as F(z, y), with y the
Laplace variable. The differential equation becomes

CyF −C

(
Tb,0+

(
Tu,0− Tb,0

) e vCκ z− e vCκ zb

e
vC
κ
zu − e

vC
κ
zb

)

= κ
d2F

dz2 − vC
dF
dz
. (A7)

In the Laplace domain, the boundary conditions are
F =

Tb,1

y
, z= zb

F =
Tu,1

y
, z= zu

. (A8)

The solution of this differential equation is

F =
(
Tb,1− Tb,0

) eb(z−zb)

y

sinh
(√

b2+
Cy
κ
(z− zu)

)
sinh

(√
b2+

Cy
κ
(zb− zu)

)

+
(
Tu,1− Tu,0

) eb(z−zu)

y

sinh
(√

b2+
Cy
κ
(z− zb)

)
sinh

(√
b2+

Cy
κ
(zu− zb)

)
+

1
y

(
Tu,0− Tb,0

) e vCκ z− e vCκ zb

e
vC
κ
zu − e

vC
κ
zb
+
Tb,0

y
, (A9)

where b is defined as

b =
Cv

2κ
. (A10)

We will calculate the poles of this equation (the values for y
for which the denominator is zero), and calculate the resid-
uals of each pole. The analytical solution is then simply the
sum of the residuals (Brutsaert, 1994). Following this theo-
rem, writing F(y) as P(y)/T (y), we can write

Ri = lim
y→yi

[
(y− yi)

P (y)eyt

T (y)

]
. (A11)

If the pole cannot be factored out, this becomes

Ri =
P (yi)e

yi t

∂T (y)
∂y

∣∣∣
y=yi

. (A12)

Equation (A9) has poles for y equal to zero and for the hy-
perbolic sine equal to zero. For y equal to zero this simply
becomes

T1(z)=
(
Tb,1− Tb,0

)
eb(z−zb)

sinh(b (z− zu))

sinh(b (zb− zu))

+
(
Tu,1− Tu,0

)
eb(z−zu)

sinh(b (z− zb))

sinh(b (zu− zb))

+
(
Tu,0− Tb,0

) e vCκ z− e vCκ zb

e
vC
κ
zu − e

vC
κ
zb
+ Tb,0. (A13)

For the hyperbolic sine, we define√
b2+

Cy

κ
(zu− zb)= jx, (A14)
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where j is the complex variable (
√
−1). We can now write

sinh

(√
b2+

Cy

κ
(zu− zb)

)
= j sin(x). (A15)

This is equal to zero for x= nπ , with n= 0, 1, 2, etc. This
means that y is equal to(
b2
+
Cyn

κ

)
(zu− zb)

2
=−x2

n⇒ yn

=−
x2
nκ

C(zu− zb)
2 −

κb2

C
, (A16)

where xn= nπ . We can thus write the solution as

T2(z, t)=−
(
Tb,1− Tb,0

) 2κ

C(zu− zb)
2 e
b(z−zb)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zu

zb− zu
xn

)
eynt −

(
Tu,1− Tu,0

)
2κ

C(zu− zb)
2 e
b(z−zu)

∞∑
n=1
(−1)n

xn

yn

sin
(
z− zb

zu− zb
xn

)
eynt . (A17)

The analytical solution is then simply

T (z, t)= T1(z)+ T2(z, t). (A18)

A4 Solution for second new inputs

We will calculate the temperature profile at t = 1t , and use
this as the initial condition for the same equation. The bound-
ary conditions are{
T = Tb,2, z= zb
T = Tu,2, z= zu.

(A19)

In the Laplace domain, the differential equation becomes

CyF −C
(
Tb,1− Tb,0

)
eb(z−zb)

sinh(b (z− zu))

sinh(b (zb− zu))

−C
(
Tu,1− Tu,0

)
eb(z−zu)

sinh(b (z− zb))

sinh(b (zu− zb))

−C
(
Tu,0− Tb,0

) e vCκ z− e vCκ zb

e
vC
κ
zu − e

vC
κ
zb
−CTb,0

+C
(
Tb,1− Tb,0

) 2κ

C(zu− zb)
2 e
b(z−zb)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zu

zb− zu
xn

)
eyn1t

+C
(
Tu,1− Tu,0

) 2κ

C(zu− zb)
2 e
b(z−zu)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zb

zu− zb
xn

)
eyn1t

= κ
d2F

dz2 − vC
dF
dz
. (A20)

The boundary conditions are, in the Laplace domain
F =

Tb,2

y
, z= zb

F =
Tu,2

y
, z= zu

. (A21)

F can then be written as

F =
(
Tb,2− Tb,1

) eb(z−zb)

y

sinh
(√

b2+
Cy
κ
(z− zu)

)
sinh

(√
b2+

Cy
κ
(zb− zu)

)

+
(
Tu,2− Tu,1

) eb(z−zu)

y

sinh
(√

b2+
Cy
κ
(z− zb)

)
sinh

(√
b2+

Cy
κ
(zu− zb)

)
+

1
y

(
Tb,1− Tb,0

)
eb(z−zb)

sinh(b (z− zu))

sinh(b (zb− zu))

+
1
y

(
Tu,1− Tu,0

)
eb(z−zu)

sinh(b (z− zb))

sinh(b (zu− zb))

+
1
y

(
Tu,0− Tb,0

) e vCκ z− e vCκ zb

e
vC
κ
zu − e

vC
κ
zb
+
Tb,0

y

−
(
Tb,1− Tb,0

) 2κ

C(zu− zb)
2 e
b(z−zb)

∞∑
n=1
(−1)n

xn

yn (y− yn)
sin
(
z− zu

zb− zu
xn

)
eyn1t

−
(
Tu,1− Tu,0

) 2κ

C(zu− zb)
2 e
b(z−zu)

∞∑
n=1
(−1)n

xn

yn (y− yn)
sin
(
z− zb

zu− zb
xn

)
eyn1t . (A22)

Through calculating the poles and the residuals, the inverse
transform is

T (z, t)=
(
Tb,2− Tb,0

)
eb(z−zb)

sinh(b (z− zu))

sinh(b (zb− zu))

+
(
Tu,2− Tu,0

)
eb(z−zu)

sinh(b (z− zb))

sinh(b (zu− zb))

+
(
Tu,0− Tb,0

) e vCκ z− e vCκ zb

e
vC
κ
zu − e

vC
κ
zb
+ Tb,0

−
(
Tb,2− Tb,1

) 2κ

C(zu− zb)
2 e
b(z−zb)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zu

zb− zu
xn

)
eynt

−
(
Tu,2− Tu,1

) 2κ

C(zu− zb)
2 e
b(z−zu)

∞∑
n=1
(−1)n
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xn

yn
sin
(
z− zb

zu− zb
xn

)
eynt

−
(
Tb,1− Tb,0

) 2κ

C(zu− zb)
2 e
b(z−zb)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zu

zb− zu
xn

)
eyn(t+1t)

−
(
Tu,1− Tu,0

) 2κ

C(zu− zb)
2 e
b(z−zu)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zb

zu− zb
xn

)
eyn(t+1t). (A23)

A5 Solution for M sequential boundary conditions

Through again calculating the temperature profile at time t
equal to 1t , using this as input for the governing equation
with new boundary conditions, and applying this methodol-
ogy recursively, the temperature profile for boundary condi-
tions Tu,M and Tb,M as

T (z, t)=
(
Tb,M− Tb,0

)
eb(z−zb)

sinh(b (z− zu))

sinh(b (zb− zu))

+
(
Tu,M− Tu,0

)
eb(z−zu)

sinh(b (z− zb))

sinh(b (zu− zb))

+
(
Tu,0− Tb,0

) e vCκ z− e vCκ zb

e
vC
κ
zu − e

vC
κ
zb
+ Tb,0

−
(
Tb,M− Tb,M−1

) 2κ

C(zu− zb)
2 e
b(z−zb)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zu

zb− zu
xn

)
eynt

−
(
Tu,M− Tu,M−1

) 2κ

C(zu− zb)
2 e
b(z−zu)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zb

zu− zb
xn

)
eynt

−
2κ

C(zu− zb)
2 e
b(z−zb)

M−1∑
m=1

(
Tb,m− Tb,m−1

)
∞∑
n=1
(−1)n

xn

yn
sin
(
z− zu

zb− zu
xn

)
eyn[t+(M−m−1)1t]

−
2κ

C(zu− zb)
2 e
b(z−zu)

M−1∑
m=1

(
Tu,m− Tu,m−1

)
∞∑
n=1
(−1)n

xn

yn
sin
(
z− zb

zu− zb
xn

)
eyn[t+(M−m−1)1t]. (A24)

Calculating the first derivative with respect to z at zu and
multiplying by the thermal conductivity leads to the ground
heat flux:

G(t)= κ
(
Tu,M− Tb,M− Tu,0+ Tb,0

) beb(zu−zb)

sinh(b (zu− zb))

+ vC
(
Tu,0− Tb,0

) e
vC
κ
zu

e
vC
κ
zu − e

vC
κ
zb

2κ2

C(zu− zb)
3 e
b(zu−zb)

∞∑
n=1
(−1)n−

(
Tb,M− Tb,M−1

)
x2
n

yn
eynt −

(
Tu,M− Tu,M−1

) 2κ2

C(zu− zb)
3

∞∑
n=1

x2
n

yn
eynt

−
2κ2

C(zu− zb)
3 e
b(zu−zb)

M−1∑
m=1

(
Tb,m− Tb,m−1

) ∞∑
n=1
(−1)n

x2
n

yn
eyn[t+(M−m−1)1t]

−
2κ2

C(zu− zb)
3

M−1∑
m=1(

Tu,m− Tu,m−1
) ∞∑
n=1

x2
n

yn
eyn[t+(M−m−1)1t]. (A25)

A6 Computationally efficient formulation

For the temperature profile, we define two variables τt(z, n)
and τb(z, n) for each value of z, which are initially zero. In
general, we write the solution for temperature input M as

T (z, t)=
(
Tb,M− Tb,0

)
eb(z−zb)

sinh(b (z− zu))

sinh(b (zb− zu))

+
(
Tu,M− Tu,0

)
eb(z−zu)

sinh(b (z− zb))

sinh(b (zu− zb))

+
(
Tu,0− Tb,0

) e vCκ z− e vCκ zb

e
vC
κ
zu − e

vC
κ
zb
+ Tb,0

−
(
Tb,M− Tb,M−1

) 2κ

C(zu− zb)
2 e
b(z−zb)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zu

zb− zu
xn

)
eynt −

(
Tu,M− Tu,M−1

)
2κ

C(zu− zb)
2 e
b(z−zu)

∞∑
n=1
(−1)n

xn

yn
sin
(
z− zb

zu− zb
xn

)

eynt −
2κ

C(zu− zb)
2 e
b(z−zb)

∞∑
n=1

τb,ne
ynt

−
2κ

C(zu− zb)
2 e
b(z−zu)

∞∑
n=1

τt,ne
ynt . (A26)

At the end of the time step we update the variables:
τb(z,n)→ τb(z,n)e

yn1t +
(
Tb,M − Tb,M−1

)
(−1)n

xn

yn
sin
(
z− zu

zb − zu
xn

)
eyn1t

τt(z,n)→ τt(z,n)e
yn1t +

(
Tu,M − Tu,M−1

)
(−1)n

xn

yn
sin
(
z− zb

zu − zb
xn

)
eyn1t

. (A27)

For the ground heat flux, we define two variables ψt(n) and
ψb(n), again initially zero. We then write the ground heat
flux as

G(t)= κ
(
Tu,M− Tb,M− Tu,0+ Tb,0

) beb(zu−zb)

sinh(b (zu− zb))

+ vC
(
Tu,0− Tb,0

) e
vC
κ
zu

e
vC
κ
zu − e

vC
κ
zb
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−
(
Tb,M− Tb,M−1

) 2κ2

C(zu− zb)
3 e
b(zu−zb)

∞∑
n=1
(−1)n

x2
n

yn
eynt −

(
Tu,M− Tu,M−1

) 2κ2

C(zu− zb)
3

∞∑
n=1

x2
n

yn
eynt

−
2κ2

C(zu− zb)
3 e
b(zu−zb)

∞∑
n=1

ψb(n)e
ynt

−
2κ2

C(zu− zb)
3

∞∑
n=1

ψt(n)e
ynt . (A28)

At the end of each time step we then update
ψb(n)→ ψb(n)e

yn1t +
(
Tb,M− Tb,M−1

)
(−1)n

x2
n

yn
eyn1t

ψt(n)→ ψt(n)e
yn1t +

(
Tu,M− Tu,M−1

) x2
n

yn
eyn1t

. (A29)

A7 Limit case for zero convection

In this case b becomes zero. We can rewrite Eq. (A24) as
(using de l’Hôpitals’s rule)

T (z, t)=
(
Tb,M− Tb,0

) z− zu

zb− zu
+
(
Tu,M− Tb,0

) z− zb

zu− zb

+Tb,0+ 2
(
Tb,M− Tb,M−1

) ∞∑
n=1

(−1)n

xn
sin
(
z− zu

zb− zu
xn

)

+ eynt2
(
Tu,M− Tu,M−1

) ∞∑
n=1

(−1)n

xn
sin
(
z− zb

zu− zb
xn

)

eynt + 2
M−1∑
m=1

(
Tb,m− Tb,m−1

) ∞∑
n=1

(−1)n

xn

sin
(
z− zu

zb− zu
xn

)
eyn[t+(M−m)1t]+ 2

M−1∑
m=1(

Tu,m− Tu,m−1
) ∞∑
n=1

(−1)n

xn
sin
(
z− zb

zu− zb
xn

)
eyn[t+(M−m)1t]. (A30)

The ground heat flux then becomes

G(t)= κ
Tu,M− Tb,M

zu− zb
+

2κ
zu− zb

(
Tb,M− Tb,M−1

) ∞∑
n=1
(−1)n

eynt +
2κ

zu− zb

(
Tu,M− Tu,M−1

) ∞∑
n=1

eynt +
2κ

zu− zb

M−1∑
m=1

(
Tb,m− Tb,m−1

) ∞∑
n=1
(−1)neyn[t+(M−m)1t]

+
2κ

zu− zb

M−1∑
m=1

(
Tu,m− Tu,m−1

) ∞∑
n=1

eyn[t+(M−m)1t]. (A31)

The computationally efficient algorithm can be applied to
these limit cases as well.
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