Articles | Volume 20, issue 12
https://doi.org/10.5194/hess-20-4867-2016
https://doi.org/10.5194/hess-20-4867-2016
Research article
 | 
12 Dec 2016
Research article |  | 12 Dec 2016

The Budyko functions under non-steady-state conditions

Roger Moussa and Jean-Paul Lhomme

Related authors

Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci., 24, 4503–4521, https://doi.org/10.5194/hess-24-4503-2020,https://doi.org/10.5194/hess-24-4503-2020, 2020
Short summary
Automatic identification of alternating morphological units in river channels using wavelet analysis and ridge extraction
Mounir Mahdade, Nicolas Le Moine, Roger Moussa, Oldrich Navratil, and Pierre Ribstein
Hydrol. Earth Syst. Sci., 24, 3513–3537, https://doi.org/10.5194/hess-24-3513-2020,https://doi.org/10.5194/hess-24-3513-2020, 2020
Short summary
Mediterranean Specific Climate Classification and Future Evolution Under RCP Scenarios
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-381,https://doi.org/10.5194/hess-2019-381, 2019
Manuscript not accepted for further review
Short summary
A non-stationary model for reconstruction of historical annual runoff on tropical catchments under increasing urbanization (Yaoundé, Cameroon)
Camille Jourdan, Valérie Borrell-Estupina, David Sebag, Jean-Jacques Braun, Jean-Pierre Bedimo Bedimo, François Colin, Armand Crabit, Alain Fezeu, Cécile Llovel, Jules Rémy Ndam Ngoupayou, Benjamin Ngounou Ngatcha, Sandra Van-Exter, Eric Servat, and Roger Moussa
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-116,https://doi.org/10.5194/hess-2019-116, 2019
Publication in HESS not foreseen
Short summary
Matching the Budyko functions with the complementary evaporation relationship: consequences for the drying power of the air and the Priestley–Taylor coefficient
Jean-Paul Lhomme and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 4857–4865, https://doi.org/10.5194/hess-20-4857-2016,https://doi.org/10.5194/hess-20-4857-2016, 2016
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Theory development
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023,https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Juan Gui, Zongxing Li, Qi Feng, Qiao Cui, and Jian Xue
Hydrol. Earth Syst. Sci., 27, 97–122, https://doi.org/10.5194/hess-27-97-2023,https://doi.org/10.5194/hess-27-97-2023, 2023
Short summary
Vegetation optimality explains the convergence of catchments on the Budyko curve
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022,https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Differential response of plant transpiration to uptake of rainwater-recharged soil water for dominant tree species in the semiarid Loess Plateau
Yakun Tang, Lina Wang, Yongqiang Yu, and Dongxu Lu
Hydrol. Earth Syst. Sci., 26, 4995–5013, https://doi.org/10.5194/hess-26-4995-2022,https://doi.org/10.5194/hess-26-4995-2022, 2022
Short summary
Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022,https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary

Cited articles

Alley, W. M.: On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models, Water Resour. Res., 20, 1137–1149, 1984.
Andréassian, V., Mander, Ü., and Pae, T.: The Budyko hypothesis before Budyko: The hydrological legacy of Evald Oldekop, J. Hydrol., 535, 386–391, https://doi.org/10.1016/j.jhydrol.2016.02.002, 2016.
Budyko, M. I.: Climate and life, Academic Press, Orlando, FL, 508 pp., 1974.
Carmona, A., Sivapalan, M., Yaeger, M. A., and Poveda, G.: Regional patterns of interannual variability of catchment water balances across the continental U.S.: A Budyko framework, Water Resour. Res., 50, 9177–9193, https://doi.org/10.1002/2014WR016013, 2014.
Chen, X., Alimohammadi, N., and Wang, D.: Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework, Water Resour. Res., 49, 6067–6078, https://doi.org/10.1002/wrcr.20493, 2013.
Download
Short summary
A new physically based formulation is proposed to extend the Budyko framework under non-steady-state conditions, taking into account the change in water storage. The new formulation, which introduces an additional parameter, represents a generic framework applicable to any Budyko function at various time steps. It is compared to other formulations from the literature and the analytical solution of Greve et al. (2016) appears to be a particular case.