Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 20, issue 2 | Copyright
Hydrol. Earth Syst. Sci., 20, 697-713, 2016
https://doi.org/10.5194/hess-20-697-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Feb 2016

Research article | 12 Feb 2016

Estimating evaporation with thermal UAV data and two-source energy balance models

H. Hoffmann et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (15 Oct 2015) by Alexander Loew
AR by Helene Hoffmann on behalf of the Authors (19 Nov 2015)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (03 Dec 2015) by Alexander Loew
RR by Nick van de Giesen (05 Dec 2015)
RR by Anonymous Referee #1 (17 Dec 2015)
ED: Publish subject to minor revisions (Editor review) (28 Dec 2015) by Alexander Loew
AR by Helene Hoffmann on behalf of the Authors (07 Jan 2016)  Author's response    Manuscript
ED: Publish as is (22 Jan 2016) by Alexander Loew
Publications Copernicus
Download
Short summary
Thermal images collected with an unmanned aerial vehicle (UAV) are applied to algorithms originally developed to be operational with satellite images, in order to estimate evapotranspiration in very high resolution. It is concluded that the thermal UAV data can be used for model input and for other potential applications requiring good quality, consistent, and high resolution land surface temperature.
Thermal images collected with an unmanned aerial vehicle (UAV) are applied to algorithms...
Citation
Share