Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
    4.819
  • CiteScore value: 4.10 CiteScore
    4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
Volume 21, issue 2
Hydrol. Earth Syst. Sci., 21, 1225-1249, 2017
https://doi.org/10.5194/hess-21-1225-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 1225-1249, 2017
https://doi.org/10.5194/hess-21-1225-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Mar 2017

Research article | 01 Mar 2017

Picturing and modeling catchments by representative hillslopes

Ralf Loritz1, Sibylle K. Hassler1, Conrad Jackisch1, Niklas Allroggen2, Loes van Schaik3, Jan Wienhöfer1, and Erwin Zehe1 Ralf Loritz et al.
  • 1Karlsruhe Institute of Technology (KIT), Institute of Water and River Basin Management, Karlsruhe, Germany
  • 2University of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany
  • 3Technical University Berlin, Institute of Ecology, Berlin, Germany

Abstract. This study explores the suitability of a single hillslope as a parsimonious representation of a catchment in a physically based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against streamflow data highlights that both models predicted the annual pattern of streamflow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall–runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results confirm that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search for the optimal representation of catchments in physically based models.

Publications Copernicus
Download
Short summary
In this study we examine whether we can step beyond the qualitative character of perceptual models by using them as a blueprint for setting up representative hillslope models. Thereby we test the hypothesis of whether a single hillslope can represent the functioning of an entire lower mesoscale catchment in a spatially aggregated way.
In this study we examine whether we can step beyond the qualitative character of perceptual...
Citation