Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-183-2017
https://doi.org/10.5194/hess-21-183-2017
Research article
 | 
10 Jan 2017
Research article |  | 10 Jan 2017

Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China

Jing Yin, Fan He, Yu Jiu Xiong, and Guo Yu Qiu

Related authors

A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement
Leiyu Yu, Guo Yu Qiu, Chunhua Yan, Wenli Zhao, Zhendong Zou, Jinshan Ding, Longjun Qin, and Yujiu Xiong
Earth Syst. Sci. Data, 14, 3673–3693, https://doi.org/10.5194/essd-14-3673-2022,https://doi.org/10.5194/essd-14-3673-2022, 2022
Short summary
Uncertainty caused by resistances in evapotranspiration
Wen Li Zhao, Yu Jiu Xiong, Kyaw Tha Paw U, Pierre Gentine, Baoyu Chen, and Guo Yu Qiu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-160,https://doi.org/10.5194/hess-2019-160, 2019
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023,https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023,https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Technical note: How physically based is hydrograph separation by recursive digital filtering?
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023,https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023,https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary

Cited articles

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment – Part 1: Model development, J. Am. Water Resour. As., 34, 73–89, 1998.
Chang, R. Y., Fu, B. J., Liu, G. H., and Liu, S. G.: Soil carbon sequestration potential for Grain for Green Project in Loess Plateau, China, Environ. Manage., 48, 1158–1172, 2011.
Chawla, I. and Mujumdar, P. P.: Isolating the impacts of land use and climate change on streamflow, Hydrol. Earth Syst. Sci., 19, 3633–3651, https://doi.org/10.5194/hess-19-3633-2015, 2015.
Chen, Y., Ren, Q. W., Huang, F. H., Xu, H. J., and Cluckie, I.: Liuxihe Model and its modeling to river basin flood, J. Hydrol. Eng., 16, 33–50, 2011.
Chen, Y., Li, J., and Xu, H.: Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization, Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016, 2016.
Download
Short summary
Conflicting results on the effect of the land use/land cover (LULC) and climate changes on runoff have been reported for relatively large basins. After quantifying the impacts of LULC and climate changes on surface runoff using the Soil and Water Assessment Tool, we concluded that large-scale LULC has had an important effect on the water cycle and that the conflicting findings on the effect of the LULC and climate changes on runoff are likely caused by uncertainty in hydrological simulations.