Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 21, 2035-2051, 2017
https://doi.org/10.5194/hess-21-2035-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
13 Apr 2017
Changes in dissolved organic matter quality in a peatland and forest headwater stream as a function of seasonality and hydrologic conditions
Tanja Broder1,2, Klaus-Holger Knorr2, and Harald Biester1 1IGÖ, Umweltgeochemie, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
2ILÖK, Hydrologie, WWU Münster, Heisenbergstr. 2, 48149 Münster, Germany
Abstract. Peatlands and peaty riparian zones are major sources of dissolved organic matter (DOM), but are poorly understood in terms of export dynamics and controls thereof. Thereby quality of DOM affects function and behavior of DOM in aquatic ecosystems, but DOM quality can also help to track DOM sources and their export dynamics under specific hydrologic preconditions. The objective of this study was to elucidate controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices for aromaticity (SUVA254), apparent molecular size (SR) and precursor organic material (FI), as well as PARAFAC modeling of excitation emission matrices (EEMs).

Indices for DOM quality exhibited major changes due to different hydrologic conditions, but patterns were also dependent on season. Stream water at the forested site with mineral, peaty soils generally exhibited higher variability in DOM concentrations and quality compared to the outflow of an ombrotrophic bog, where DOM was less susceptible to changes in hydrologic conditions. During snowmelt and spring events, near-surface protein-like DOM pools were exported. A microbial DOM fraction originating from groundwater and deep peat layers was increasing during drought, while a strongly microbially altered DOM fraction was also exported by discharge events with dry preconditions at the forested site. This might be due to accelerated microbial activity in the peaty riparian zone of the forested site under these preconditions. Our study demonstrated that DOM export dynamics are not only a passive mixing of different hydrological sources, but monitoring studies have to consider that DOM quality depends on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated the most variability in headwater DOM quantity and quality, as could be tracked by the used spectrofluorometric indices.


Citation: Broder, T., Knorr, K.-H., and Biester, H.: Changes in dissolved organic matter quality in a peatland and forest headwater stream as a function of seasonality and hydrologic conditions, Hydrol. Earth Syst. Sci., 21, 2035-2051, https://doi.org/10.5194/hess-21-2035-2017, 2017.
Publications Copernicus
Download
Short summary
This study elucidates controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices (SUVA254, SR and FI) and PARAFAC modeling of EEMs. DOM quality depended clearly on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated most variability in headwater DOM quantity and quality.
This study elucidates controls on temporal variability in DOM concentration and quality in...
Share