Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 21, 2107-2126, 2017
https://doi.org/10.5194/hess-21-2107-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
19 Apr 2017
Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones
Danlu Guo, Seth Westra, and Holger R. Maier School of Civil, Environmental and Mining Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
Abstract. Assessing the factors that have an impact on potential evapotranspiration (PET) sensitivity to changes in different climate variables is critical to understanding the possible implications of climatic changes on the catchment water balance. Using a global sensitivity analysis, this study assessed the implications of baseline climate conditions on the sensitivity of PET to a large range of plausible changes in temperature (T), relative humidity (RH), solar radiation (Rs) and wind speed (uz). The analysis was conducted at 30 Australian locations representing different climatic zones, using the Penman–Monteith and Priestley–Taylor PET models. Results from both models suggest that the baseline climate can have a substantial impact on overall PET sensitivity. In particular, approximately 2-fold greater changes in PET were observed in cool-climate energy-limited locations compared to other locations in Australia, indicating the potential for elevated water loss as a result of increasing actual evapotranspiration (AET) in these locations. The two PET models consistently indicated temperature to be the most important variable for PET, but showed large differences in the relative importance of the remaining climate variables. In particular for the Penman–Monteith model, wind and relative humidity were the second-most important variables for dry and humid catchments, respectively, whereas for the Priestley–Taylor model solar radiation was the second-most important variable, with the greatest influence in warmer catchments. This information can be useful to inform the selection of suitable PET models to estimate future PET for different climate conditions, providing evidence on both the structural plausibility and input uncertainty for the alternative models.

Citation: Guo, D., Westra, S., and Maier, H. R.: Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones, Hydrol. Earth Syst. Sci., 21, 2107-2126, https://doi.org/10.5194/hess-21-2107-2017, 2017.
Publications Copernicus
Download
Short summary
This study assessed the impact of baseline climate conditions on the sensitivity of potential evapotranspiration (PET) to a large range of plausible changes in temperature, relative humidity, solar radiation and wind speed at 30 Australian locations. Around 2-fold greater PET changes were observed at cool and humid locations compared to others, indicating potential for elevated water loss in the future. These impacts can be useful to inform the selection of PET models under a changing climate.
This study assessed the impact of baseline climate conditions on the sensitivity of potential...
Share