Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-23-2017
https://doi.org/10.5194/hess-21-23-2017
Research article
 | 
02 Jan 2017
Research article |  | 02 Jan 2017

Towards a tracer-based conceptualization of meltwater dynamics and streamflow response in a glacierized catchment

Daniele Penna, Michael Engel, Giacomo Bertoldi, and Francesco Comiti

Related authors

Contrasting water use strategies of beech trees along two hillslopes with different slope and climate
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-225,https://doi.org/10.5194/hess-2023-225, 2023
Revised manuscript under review for HESS
Short summary
A comparative study of plant water extraction methods for isotopic analyses: Scholander-type pressure chamber vs. cryogenic vacuum distillation
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022,https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Evaporation enhancement drives the European water-budget deficit during multi-year droughts
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022,https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020,https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment
Michael Engel, Daniele Penna, Giacomo Bertoldi, Gianluca Vignoli, Werner Tirler, and Francesco Comiti
Hydrol. Earth Syst. Sci., 23, 2041–2063, https://doi.org/10.5194/hess-23-2041-2019,https://doi.org/10.5194/hess-23-2041-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024,https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024,https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024,https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Stream water sourcing from high elevation snowpack inferred from stable isotopes of water: A novel application of d-excess values
Matthias Sprenger, Rosemary Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-1934,https://doi.org/10.5194/egusphere-2023-1934, 2023
Short summary
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023,https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary

Cited articles

Aizen, V. B, Aizen, E. M., and Melack, J. M.: Precipitation, melt and runoff in the northern Tien Shan, J. Hydrol., 186, 229–251, 1996.
Baraer, M., McKenzie, J., Mark, B. G., Gordon, R., Bury, J., Condom, T., Gomez, J., Knox, S., and Fortner, S. K.: Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru, Hydrol. Process., 29, 2561–2581, https://doi.org/10.1002/hyp.10386, 2015.
Barthold, F. K., Tyralla, C., Schneider, K., Vaché, K. B., Frede, H.-G., and Breuer, L.: How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis, Water Resour. Res., 47, W08519, https://doi.org/10.1029/2011WR010604, 2011.
Beniston, M.: Impacts of climatic change on water and associated economic activities in the Swiss Alps, J. Hydrol., 412–413, 291–296, https://doi.org/10.1016/j.jhydrol.2010.06.046, 2012.
Blaen, P. J., Hannah, D. M., Brown, L. E., and Milner, A. M.: Water source dynamics of high Arctic river basins: water source dynamics of high arctic river basins, Hydrol. Process., 28, 3521–3538, https://doi.org/10.1002/hyp.9891, 2014.
Download
Short summary
In this research we used environmental tracers in the Saldur River catchment, Italian Alps to obtain new insight into the hydrology of glacierized catchments. We analysed the spatio-temporal variability of the tracer signature within the catchment, distinguished the contribution of groundwater, glacier melt and snowmelt to stream discharge, identified the sources of uncertainty in the estimation of streamflow components and presented a paradigm of hydrological function of glacierized catchments.