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Abstract. Precipitation is the cause of major perturbation to
the flow in urban drainage and wastewater systems. Flow
forecasts, generated by coupling rainfall predictions with a
hydrologic runoff model, can potentially be used to opti-
mize the operation of integrated urban drainage–wastewater
systems (IUDWSs) during both wet and dry weather peri-
ods. Numerical weather prediction (NWP) models have sig-
nificantly improved in recent years, having increased their
spatial and temporal resolution. Finer resolution NWP are
suitable for urban-catchment-scale applications, providing
longer lead time than radar extrapolation. However, fore-
casts are inevitably uncertain, and fine resolution is espe-
cially challenging for NWP. This uncertainty is commonly
addressed in meteorology with ensemble prediction systems
(EPSs). Handling uncertainty is challenging for decision
makers and hence tools are necessary to provide insight on
ensemble forecast usage and to support the rationality of de-
cisions (i.e. forecasts are uncertain and therefore errors will
be made; decision makers need tools to justify their choices,
demonstrating that these choices are beneficial in the long
run).

This study presents an economic framework to support the
decision-making process by providing information on when
acting on the forecast is beneficial and how to handle the
EPS. The relative economic value (REV) approach associates
economic values with the potential outcomes and determines
the preferential use of the EPS forecast. The envelope curve
of the REV diagram combines the results from each probabil-
ity forecast to provide the highest relative economic value for

a given gain–loss ratio. This approach is traditionally used at
larger scales to assess mitigation measures for adverse events
(i.e. the actions are taken when events are forecast). The
specificity of this study is to optimize the energy consump-
tion in IUDWS during low-flow periods by exploiting the
electrical smart grid market (i.e. the actions are taken when
no events are forecast). Furthermore, the results demonstrate
the benefit of NWP neighbourhood post-processing methods
to enhance the forecast skill and increase the range of bene-
ficial uses.

1 Introduction

The primary objective of combined urban drainage systems
(UDSs) and wastewater treatment plants (WWTPs) is to con-
vey and treat waste water and to prevent flooding and com-
bined sewer overflows (CSOs). In order to achieve these ob-
jectives, pipes and detention basins in combined UDSs are
dimensioned to cope with relatively large rain events. Typi-
cally, surcharge of manholes and flooding is only allowed to
occur on average every 10 years (as per the Danish regula-
tions; Harremoës et al., 2005) whereas overflow occurs more
frequently depending on the local environmental regulations,
from 10 times per year to once in 10 years, for example. This
means that during dry weather the flow is relatively low com-
pared with the conveyance capacity of the UDS and that the
storage capacity is left unused. Rainfall only occurs rarely,
e.g. on the study case catchment (more details in Sect. 2.3.)
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the raining period represents 7.2 % of the time. Hence, in-
tegrated urban drainage–wastewater systems (IUDWSs) are
mostly under low-flow conditions. During these periods the
IUDWS management objective can be switched from its pri-
ority operational focus on CSO and flood prevention towards
other goals such as energy consumption and CO2 emissions.

Denmark has the political ambitions to have a fossil fuel
free energy system by 2050 which requires the development
of renewable energy sources (Ministry of Foreign Affairs
of Denmark, 2016). One of the main critiques towards re-
newable sources such as wind and solar energy is their in-
termittent nature. Therefore a key parameter for the transi-
tion to a green energy system is the implementation of an
electric smart grid with flexible, proactive consumers to bal-
ance the fluctuating power production (Hadjsaïd and Sabonn-
odiere, 2012). The European Technology Platform for smart
grids defines the concept of smart grids as an “electricity net-
work that can intelligently integrate the actions of all users
connected to it – generators, consumers and those that do
both – in order to efficiently deliver sustainable, economic
and secure electricity supplies” (www.smartgrids.eu/). En-
ergy markets are developed, as part of the smart grid, to
align electricity production and consumption through bids
and offers. Hence the electricity price is based on supply
and demand, creating an economic incentive to distribute the
energy consumption in time (e.g. shifting non-essential en-
ergy consumption out of the consumption peaks). For fur-
ther detailed history and description of electricity markets,
see Weron (2006).

IUDWS can potentially be used actively to take advan-
tage of the energy market variation. Wastewater, for example,
contains organic matter which can be converted to biogas at
the WWTP, and the biogas production process may provide
some energy storage that is potentially useful in a smart grid
context. Furthermore, during dry periods, the unused storage
in the UDS can be used as a buffer to control the timing of the
energy consumption associated with wastewater transporta-
tion and treatment. Figure 1 highlights that both wastewater
production and energy consumption are driven by human ac-
tivities and therefore have similar daily pattern. This means
that the energy is generally more expensive when the need
for wastewater transportation and treatment is peaking. The
energy market is also influenced by other parameters (e.g. the
solar and wind intensity) but on yearly average the impact of
the daily consumption can be observed.

Aymerich et al. (2015) investigated the relation between
the energy consumption and energy cost at a WWTP in re-
gard to energy tariff structures (i.e. energy markets). The aer-
ation process represents between 50 and 70 % of the WWTP
process energy consumption (Rosso and Stenstrom, 2005).
Leu et al. (2009) studied the impact of a varying wastewa-
ter load on the oxygen transfer efficiency and aeration costs,
considering to the daily variation of the power rates, and
showed that there is potential to reduce the average power
costs, within the limitations of the WWTP storage capacity.

Figure 1. Yearly average (2015) of hourly energy price for the en-
ergy market DK2 covering the Copenhagen region (in blue, data
from http://www.nordpoolspot.com/). Calibrated daily variation of
the dry weather flow for the Damhuså catchment (green) used for
demonstration in this paper; see further details in Sect. 2.3.

Bjerg et al. (2015) investigated the use of the storage vol-
ume in the pipe system upstream from a WWTP in Kolding
(Denmark) to store wastewater and utilize the energy price
fluctuations. However, such optimization requires informa-
tion on the incoming loads (i.e. flow predictions), in order to
know when it is safe to optimize the energy consumption (i.e.
when the weather is dry) and when to prepare and operate the
IUWDS to cope with large inflows during wet weather. Such
flow predictions should ideally cover the forecast horizon of
the smart grid market, i.e. 1 to 2 days (e.g. the day-ahead
energy market; Zugno, 2013), which requires the use of nu-
merical weather prediction (NWP) models.

NWPs are already in use in other fields such as wind
and solar power production prediction (Bacher et al., 2009;
Giebel et al., 2005), streamflow forecasting (Cuo et al.,
2011; Shrestha et al., 2013), reservoir inflow prediction (Col-
lischonn et al., 2007), flood forecasting (Damrath et al.,
2000), and typhoon forecasting (Chang et al., 2015). Uncer-
tainty is a challenge for NWP, especially for precipitation
which is non-continuous and highly variable in both space
and time. To tackle this problem, meteorologists commonly
generate ensemble prediction systems (EPSs) by perturbing
the initial conditions and the physics of the NWP models to
generate a number of ensemble members (EMs) that repre-
sent an ensemble spread. The quality of an EPS can be quan-
titatively assessed based on various forecast characteristics.
The relative operating characteristic (ROC; Mason, 1982) is
used to measure the discrimination skill (i.e. the ability to
discriminate between events and non-events) of an EPS, by
plotting the empirical probability of detection (PoD) versus
the probability of false detection (PoFD). Using an EPS in-
creases the event discrimination skill by providing a larger
range of predictions than an individual deterministic forecast.
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The development of high-resolution limited-area NWP
models has led to more realistic-appearing forecasts. Con-
vective precipitations are described in an explicit and more
detailed way using mesoscale atmospheric processes (Sun
et al., 2014). These developments foster the opportunity of
UDS applications which require fine temporal and spatial
resolution. However, precipitation is one of the most difficult
variables to forecast on an urban scale due to its large vari-
ability in space, time and intensity (Du, 2007). Precipitation
forecast uncertainties increase rapidly with decreasing spa-
tial grid size, as inevitable errors in the position and timing of
rain cells are amplified with the increase in resolution. EPSs
aim to describe this uncertainty, but are generally under-
dispersive and unable to capture all sources of uncertainty.
NWP post-processing methods (also called pre-processing
from a hydrological modelling point of view) are thus nec-
essary to obtain reliable probabilistic forecast as explained
in WWRP/WGNE (2009). Courdent et al. (2017) described
NWP post-processing methods for urban drainage flow fore-
casting and compared their event discrimination skills. The
neighbourhood methods (Theis et al., 2005) can, for ex-
ample, be used to enhance the forecast skill by accounting
for potentially misplaced rain events. The “maximal threat”
method NWP post-processing, used in this study, considered
the highest rainfall prediction within a given area surround-
ing the catchment. The radius of the neighbouring area in-
cluded is used as a parameter during the decision making, in
addition to the fraction of EM fEM.

This article presents a framework for objectively optimiz-
ing EPS forecast-based decision making in the management
of IUDWSs by selecting the decision threshold fEM and post-
processing neighbourhood method, given the specific prob-
lem at hand. The relative economic value (REV) approach as-
sociates economic values to the outcomes of the decision sys-
tem and assesses the forecast value relative to potential bene-
fit resulting from a perfect forecast. The preferential manage-
ment for a given EPS forecast is characterized by the high-
est REV. For example, we considered the decision-making
problem of switching from normal operation focussing on
flow management to dry weather operation focussing on en-
ergy optimization linking with the smart grid. To measure
the usefulness of weather forecasts, the forecast skills have
to be converted to potential economic benefits for the user
decision making process. Richardson (2000) used the REV
to assess the economic benefit of road gritting to prevent the
formation of ice using weather models in comparison to us-
ing purely climatological information (i.e. the statistical be-
haviour of the weather, such as the return period of an event).
Economic values were assigned to the different prediction
outcomes described in a contingency table: (a) hits, (b) false
alarms, (c) misses and (d) correct negatives. These economic
values represent the benefit of taking actions (or non-action)
when the forecast is revealed to be correct against the draw-
backs of those actions (or non-action) in case of forecast er-
ror.

EPS provides a range of prediction skills characterized by
the combined choice of post-processing method and decision
threshold (fEM) used to predict an event. The REV of each
combination is quantified considering the occasions when the
forecast proves to be beneficial, detrimental or neutral to the
user, as well as the economic value associated with these sit-
uations. The higher the cost of inappropriate action relative to
the potential gain, the more certainty the user requires about
the forecast before he or she takes action.

Previous studies on REV analysis typically assessed the
benefit of prevention measures mitigating severe weather
events, such as frost (Richardson, 2000), intense precipita-
tion (Atger, 2001), river floods (Roulin, 2007) and typhoons
(Chang et al., 2015), expressed as a cost–loss ratio. This
study develops a different perspective, assessing the poten-
tial benefit of optimizing IUDWS when the forecast predicts
periods with low flow (i.e. dry weather when no events are
forecast). Therefore, our decision model is not based on a
cost–loss ratio but a gain–loss ratio. Furthermore, the stud-
ies mentioned consider a fixed ratio, whereas in our case
(i) the gain depends on smart grid variations and (ii) the loss
is related to the risk of CSO and the negative impact on the
WWTP operation. Hence, the gain–loss ratio and the opti-
mum combination of post-processing method and decision
threshold need to be reassessed for each time step.

This paper is organized as follows: Sect. 2 introduces the
DMI-HIRLAM-S05 weather model, which provides the rain-
fall forecast used in our study, the NWP post-processing
method applied and the hydrological rainfall–runoff model.
Section 3 describes the prediction performance evaluation
methods used, including the ROC and the REV diagrams.
Results and prediction examples are presented and discussed
in Sect. 4. Finally, Sect. 5 provides the conclusions.

2 Material: NWP data, study case and hydrological
model

As emphasized by Shrestha et al. (2013), the evaluation of
NWP model precipitation forecasts for streamflow forecast-
ing should be done with a hydrological perspective. There-
fore, as recommended by Pappenberger et al. (2008), the
evaluation of urban drainage flow forecasts is in this paper
based on a coupled meteorological and hydrological model.
Hence, the forecast skills are assessed based on discharge
predictions and discharge observations rather than precipita-
tion forecasts and precipitation observations. This methodol-
ogy considers the importance of the dominant hydrological
processes and the nonlinear error transformation by the hy-
drological model.

This section describes the NWP model and data used in
the study. Then the post-processing neighbourhood methods
are presented, the urban catchment study case is presented,
the hydrological model is described, and finally the energy
market data that was used is presented.
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2.1 The EPS HIRLAM-DMI-S05 numerical weather
prediction (NWP) model

The rainfall forecasts used in this study were generated by
the DMI-HIRLAM-S05 model and were provided by the
Danish Meteorological Institute (DMI). This NWP model
has a horizontal resolution of 0.05◦ (approx. 5.6 km) and a
forecast horizon of 54 h with hourly time-step predictions.
New forecast are generated every 6 h, at 00:00, 06:00, 12:00
and 18:00 UTC. The DMI-HIRLAM-S05 ensemble is a 2-
dimensional EPS comprising 25 members based on 5 differ-
ent initial conditions and 5 different model structures. For
further description of the processes and parameters men-
tioned above, see the HIRLAM technical documentation
(Unden et al., 2002), the DMI technical report (Feddersen,
2009) and the HIRLAM website (http://www.hirlam.org/).
This study uses 2 years of archived EPS NWP data (from
June 2014 to May 2016).

2.2 Enhancing forecast by post-processing NWP EPS
data

Two NWP post-processing methods developed in Courdent
et al. (2017) were used in this study: (i) the realistic catch-
ment “weighted areal overlap” method which only consid-
ers the grid cells overlapping the hydrologic catchment and
weighs them based on the percentage of overlap and (ii) the
maximal threat in the surroundings method, which consid-
ers cells within a defined radius around the catchment. The
maximal threat method combines the worst-case-scenario ap-
proach and the neighbourhood method developed by Theis et
al. (2005), and accounts for neighbourhood cells in the pre-
diction as illustrated by Fig. 2. Hence, the maximal threat ap-
proach considers as input, for each EM, the highest rainfall
intensity in the surroundings. This method keeps the same
ensemble size as the weighted areal overlap method and re-
duces the number of missed events but increases the number
of incorrectly predicted or over-predicted events.

2.3 Study case

The economic framework developed in this study was ap-
plied on the Damhuså urban drainage catchment (Copen-
hagen, Denmark). This 67 km2 highly urbanized area com-
posed of compact residential housing is equipped with a
combined sewer system which conveys wastewater, rainfall
runoff from paved surfaces and infiltration inflow, especially
in the winter months. This catchment was chosen for the
absence of major flow-control infrastructures affecting its
hydraulic response in order to simplify the modelling ap-
proach needed for our demonstration. The Damhuså WWTP
has a capacity of 350 000 PE (population equivalent). Its
biological treatment has a maximal hydraulic capacity of
10 000 m3 h−1. In 2015, the WWTP treated 33 390 000 m3

and consumed 8735 MWh of electricity, which correspond to

Figure 2. Illustration of the 6-grid-cell radius used by the maximal
threat neighbourhood approach, for the Damhuså catchment used
for demonstration in this paper (Courdent et al., 2017).

a ratio of 0.261 kWh m−3. In parallel, the WWTP produced
8735 MWh of heat and 211 MWh of electricity from its bio-
gas engine (BIOFOS, 2015).

Rainfall observation data were obtained from the national
Danish SVK rain gauge network (blue circles in Fig. 3)
which is operated by the Danish Meteorological Institute
(DMI) and the Water Pollution Committee of the Danish
Society of Engineers (SVK – Spildevandskomiteen, in Dan-
ish). The rainfall measurements were recorded with a 1 min
temporal and a 0.2 mm volumetric resolution; for more in-
formation see Jørgensen et al. (1998). The catchment outlet
(red hexagon in Fig. 3) is a combined sewer pipe intercep-
tor with a maximum capacity of 10 000 m3 h−1. Once this
threshold is reached, CSOs occur. The overflowing water is
discharged, untreated, into a nearby small river (Damhuså)
while the remaining flow is discharged through the intercep-
tor pipe, which is monitored using an electromagnetic flow
meter with a 2 min temporal resolution and operated by the
utility company HOFOR.

This study is based on event prediction by characterizing
the flow status in the IUDWS and distinguishing two do-
mains: (i) periods with high flows during which the man-
agement objective is to maximize the hydraulic capacity of
the WWTP to limit the impact of CSO, etc., and (ii) periods
with low flows during which the management objectives can
be switched to WWTP operational efficiency, minimizing en-
ergy consumption, etc. The event definition should be evalu-
ated relatively to the specific IUDWS and low-flow optimiza-
tion scheme in focus. In this study the occurrence of an event
is defined by a flow exceedance of 4000 m3 h−1 over a 1 h
period. For each NWP the occurrence (or non-occurrence) of
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Figure 3. The Damhuså urban drainage catchment, Copenhagen, Denmark (contributing area: green area on the map).

a high-flow event is assessed for each hourly time step fore-
cast.

2.4 Hydrological model description

The hydrological model is composed of three main concep-
tual parts: (i) the wastewater flow from households is mod-
elled using second-order Fourier series (see, for example,
Langergraber et al, 2008), (ii) the fast rainfall runoff from im-
pervious areas is represented by a lumped conceptual model
using the Nash linear reservoir cascade concept (Nash, 1957)
and (iii) the slow runoff (caused e.g. by infiltration-inflow)
is also modelled based on the Nash linear reservoir cascade
concept using a wetness index characterized by the monthly
potential evaporation and previous rainfall events. This hy-
drological model is further detailed in Courdent et al. (2017).
The wastewater flow parameters were estimated first, us-
ing flow observations from summer periods without rainfall
events to avoid influence from the two other processes. Then,
using fixed wastewater parameters, the parameters of the fast
rainfall runoff were estimated based on rain and flow data
for rain events during summer months, to avoid influence
from the slow runoff process, which was calibrated last for
the full period (from November 2012 to November 2014). In
all cases, the calibration was conducted using the differen-
tial evolution adaptive metropolis (DREAM) method (Laloy
and Vrugt, 2012), considering the root mean square error as
objective function.

2.5 Energy market data

This study used historical data from the day-ahead energy
market provider Nord Pool. The day-ahead market has 24 h
lead time. Buyers and suppliers submit bids and offers for
each hour of the next day and each hourly market clear-
ing price is set such that it balances supply and demand.
The intra-day market, which only has 1 h lead time, is act-
ing as a balancing market to support the day-ahead mar-
ket. The hourly energy prices are defined over a geograph-
ical area. The geographical area corresponding to our case
study is DK2 which covers the entire Zealand (http://www.
nordpoolspot.com/).

3 Methodology

3.1 Contingency table

The probability that the flow will exceed a given threshold is
estimated as the fraction of EMs predicting an event. The
ensemble (probability) forecast can be converted to a sin-
gle binary forecast by selecting a decision threshold (fEM,
threshold probability). If the fraction of EMs, predicting an
event is higher or equal to the decision threshold (fEM), then
an event is forecast.

The empirical performance over a period of time of a bi-
nary forecast can be summarized in a 2× 2 contingency ta-
ble showing the number of correctly and incorrectly forecast
events occurring or not occurring (Table 1). Hits (a) repre-
sent the correct positives, false alarms (b) represent the false
positives, misses (c) represent the false negatives and the cor-
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Table 1. Contingency table (with n the sample size).

Event forecast Event observed

Yes No

Yes hits (a) false alarms (b) a+ b

No misses (c) correct negatives (d) c+ d

a+ c b+ d a+ b+ c+ d = n

Table 2. Verification measures based on the contingency table.

Score Formula Range Perfect

Probability of detection, PoD a/(a+ c) [0,1] 1
Probability of false detection, PoFD b/(b+ d) [0,1] 0
Occurrence frequency of events, µ (a+ c)/n [0,1] n/a

n/a: not applicable.

rect negatives (d) represent the correct forecasts of no events
occurring. Measures of performance of a sequence of binary
forecasts can be formulated as a function of these four out-
comes (a, b, c and d). Those four possible outcomes sum
up to n, which corresponds to the total number of events as-
sessed. Each event corresponds to the flow status of a given
hourly time step forecast from a given NWP. The different
lead times of the NWP are aggregated in the results.

Table 2 displays the verification measures used in this pa-
per; a comprehensive review and further description of veri-
fication measures can be found in the meteorological litera-
ture, e.g. WWRP/WGNE (2009) and Wilks (2011).

The PoD is defined as the fraction of occurrences of events
that were correctly forecast (i.e. hits), while the PoFD is the
fraction of non-occurrences of events that were incorrectly
forecast (i.e. false alarms). The empirical occurrence fre-
quency (µ) expresses climatological information about the
occurrence of events.

3.2 Brier skill score

The Brier score (Brier, 1950) assesses forecast quality of dis-
crete probability forecasts predicting binary outcomes (i.e.
“events” and “non-events”) and is comparable to the mean
square error. For a given t th hourly forecast time step, the
forecast probability of an event (0≤ fEM, t ≤ 1) is compared
to the observation (yt ). If the t th observation is an event (or
non-event) then yt = 1 (or yt = 0).

BS=
1
n

n∑
t=1
(fEM, t − yt )

2 (1)

The Brier skill score (BSS) is formulated as a skill score re-
lated to a reference forecast, e.g. climatology in meteorology.
In our case the reference forecast is based on the frequency
of occurrence of events during the recorded forecast period
(µ). A positive value of the BSS indicates that forecast is

Figure 4. Example of a relative operating characteristic (ROC) dia-
gram.

beneficial compared to the reference forecast.

BSS= 1−
BS

BSref
with BSref =

1
n

n∑
t=1
(µ− yt )

2 (2)

3.3 Relative operating characteristic (ROC)

The relative operating characteristic (ROC), which originates
from signal detection theory (Mason, 1982), measures the
discrimination ability (i.e. the ability to discriminate between
events and non-events) of an EPS. The ROC plots the PoD
versus the PoFD using a set of decreasing probability deci-
sion thresholds (Fig. 4). The selection of a lower decision
threshold fEM to convert the ensemble forecast to a single
forecast is more conservative towards correctly predicting
events. Therefore the PoD will be higher but the PoFD will
increase as well.

The ROC diagram of the flow domain distinction using
the weighted areal overlap NWP post-processing method is
displayed in Fig. 4. The blue dots represent the discrimi-
nation skill of each individual EM. Figure 4 shows that all
EMs have comparable discrimination skill. The red dots cor-
respond to the discrimination skills from all decision thresh-
olds, from fEM = 1 at the bottom left (i.e. all EMs should
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agree on the event occurrence) to fEM =
1
N

on the top right
(i.e. the prediction of an event from a single EM is enough
to consider an occurrence). Figure 4 underlines that EPSs
and decision thresholds provide a larger range of available
prediction skills than an EM individually. The choice of a
decision threshold represents a trade-off between predicting
events correctly and generating false alarms.

The skill score of a ROC diagram is calculated based on
the area under the curve (ROCA). The ROCA ranges from 0
to 1, with a score of 1 corresponding to a perfect forecast and
a score of 0.5 corresponding to the skill of a random forecast
based on the probability of occurrence (µ).

3.4 Relative economic value (REV)

A proper evaluation of the benefits of a forecast system
should not only consider the forecasts skill, e.g. using PoD
and PoFD, or BSS. A detailed knowledge of the decision-
making process is needed to answer the question: “how does
this skill translate to an economic value of a forecast?”.
Furthermore, when using ensemble forecasts, the following
question should be answered as well: “which decision thresh-
old and NWP post-processing method for the EPS is the most
beneficial for my purpose?”.

The economic benefit from a forecast depends on the alter-
native courses of action and their consequences. Each course
of action is associated with a cost and leads to economic ben-
efit or loss depending on the observed outcome. The task is
thus to choose the appropriate actions that will maximize the
expected gain or minimize the expected loss. The usefulness
of the forecast can thus be quantified by considering the occa-
sions when the forecast was beneficial, detrimental or neutral
with respect to the process of decision making.

The relative economic value of our urban hydrological pre-
diction system is here inspired by the relatively simple cost–
loss ratio decision model introduced by Richardson (2000).
Richardson developed this approach to assess the economic
value of taking costly actions to mitigate the consequences
of forecast adverse weather events in order to reduce the po-
tential loss associated with them. The decision threshold that
can empirically be shown to lead to the lowest expense in the
long term should be adopted. Richardson illustrated his ap-
proach for the problem of road gritting to prevent the forma-
tion of ice. Subsequently Roulin (2007) used this approach to
investigate the benefit of river-flow mitigation measures for
two catchments in Belgium, and Chang et al. (2015) applied
it to assess the relevance of typhoon mitigation measures in
Taiwan.

All these studies consider adverse events which can be
mitigated at a cost, reducing the loss associated with these
events, and their decision models are therefore based on a
cost–loss ratio. This study investigates a different perspec-
tive. Instead of taking mitigating measures when adverse
events are predicted, the system is optimized when no events
are predicted in order to achieve a positive gain, and left un-

Table 3. Economical value assigned to the different outcomes of the
contingency table (L: loss; G: gain).

Event observed

Event forecast Yes No

Yes 0 0
No L G

der its traditional management when events are predicted.
Therefore, our decision model is based on a gain–loss ra-
tio. During low-flow periods, when no events are forecast,
the management objective is switched to energy consump-
tion by utilizing the smart grid energy market, leading to a
gain (G). As a consequence, mis-predicted high-flow events
will jeopardize the IUDWS, e.g. the detention basins may not
be empty in time. These negative outcomes are represented
by a loss (L). In the case of forecast events (hits and false
alarms), the management objectives of the IUDWS remain
unchanged. The economic outcome of these two situations
remains the same and therefore a null value is assigned to
them; see Table 3.

Furthermore Richardson (2000) used a static ratio, the
cost of mitigation measures and reduction of loss associated
were fixed. This study encompasses the possibility of a time-
dependent gain–loss ratio. Indeed, the gain (G) from switch-
ing the management objectives to energy optimization de-
pends on the state of the energy market at the given time.
Similarly, the loss (L) resulting from mis-predicted events is
related to the current status of the IUWDS, e.g. the volume
of water stored.

Based on Tables 2 and 3 the expected economic value of
using the forecast for decision making over one time step (n
represents the total number of time steps) can be expressed
empirically as follows:

Eforecast =
d ·G− c ·L

n
. (3)

In case of a perfect forecast (b = c = 0) the economic value
would be as follows:

Eperfect = d ·
G

n
= (1−µ) ·G. (4)

If no forecasts are available, the optimal course of action can
be determined based on the empirical frequency of occur-
rence of an event, µ (climatological information in case of
weather event as for Richardson, 2000). The two possible
courses of action are either to always optimize the system de-
spite the losses or to never optimize the system. Estatistic con-
siders the highest economic value between these two courses
of action (Eq. 5); never optimizing (i.e. the IUDWS man-
agement is unchanged) would lead to an null economic value
whereas always optimizing would lead to a gainG associated
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to a loss L when events do occur.

Estatistic =max(G−µ ·L, 0) (5)

The relative economic value (REV), as defined by Richard-
son (2000), compares the benefit of acting on a given forecast
to the benefit which would be achieved by acting on a perfect
forecast as a ratio (Eq. 6).

REV=
Eforecast−Estatistic

Eperfect−Estatisic
(6)

The REV expressed by Eq. (6) can be reformulated using
Eqs. (3), (4) and (5) and expressed as a function of the PoD,
the PoFD, the frequency of occurrence (µ) and the gain–loss
ratio (α = G

L
) as shown by Eq. (7) and displayed in Fig. 5.

REV= (7)
α · (1−µ) · (1−PoFD)− (1−PoD) ·µ−max(α−µ,0)

α · (1−µ)−max(α−µ,0)

The possible value of the REV ranges from 1, correspond-
ing to a perfect forecast, to minus infinity. In case of positive
REV the use of the forecast is beneficial, whereas a negative
REV indicates that using statistical information and either
always or never optimizing the IUDWS yields a better eco-
nomic value than using the weather forecast. Hence the REV
can be divided in 3 domains: (i) the interval on the right of the
curve in which it is preferable to always optimize (dotted do-
main on the right side of Fig. 5), (ii) the interval with positive
REV covered by the curve in which using the forecast is ben-
eficial (middle domain in Fig. 5) and (iii) the interval on the
left in which it is preferable to never optimize (crosshatched
domain on the left side of Fig. 5). Assuming that a per-
fect knowledge of the future yields a benefit β (compared to
purely statistical information), then using the actual forecast
provides a benefit to the user of (100 ·REV)% of β.

Figure 6 displays the ROC diagram and the REV-α rela-
tionship for flow forecast based on the catchment weighted
areal overlap post-processing method. As explained in
Sect. 3.3. the ROC diagram describes the EPS forecast dis-
crimination skill for the different decision thresholds, fEM.
To support decision making the ROC diagram is converted
to the REV-α relationship. Each point of the ROC diagram
(Fig. 6a) represents a discrimination skill (PoD, PoFD) for a
given decision threshold based on the fraction of EMs pre-
dicting an event (fEM). For each of these points the REV can
be determined as a function of the gain–loss ratio α (Eq. 7
and Fig. 5).

4 Results and discussion

4.1 ROC, REV and NWP post-processing methods.

The REV is closely related to the ROC diagram as indicated
by Richardson (2000); Zhu et al. (2002) and illustrated in

Figure 5. The 3 domains of operation of the REV curve as a func-
tion of the gain–loss ratio α.

Fig. 6. The curves in Fig. 6b show the REV-α relationship
for the decision thresholds (fEM) highlighted in Fig. 6a. The
green dot (number 5) in Fig. 6a corresponds to a decision
threshold fEM = 1/25 and provides the highest PoD for this
EPS; the REV associated with it, i.e. the green line (num-
ber 5) in Fig. 6b, leads to the highest REV for low α values
(below 0.105) which corresponds to a high negative impact
of missed events. Other decision thresholds yield better REV
for higher α, e.g. the decision threshold fEM = 5/25 corre-
sponding to the red dot (legend 4) in Fig. 6a provides the
highest REV (legend 4) for α within the range [0.16; 0.18].
Hence as demonstrated by Richardson (2000) the ensemble
has better discrimination and can provide higher REV to a
wider range of users (i.e. larger interval with positive REV)
than any individual deterministic forecast (colour line) as il-
lustrated by the envelope curve.

The implementation of the IUDWS energy consumption
optimization scheme is challenged by potentially missed
high-flow events. Indeed, these situations would lead to inap-
propriate management, jeopardizing the performance of the
IUDWS. As explained in Sect. 2.2, post-processing methods
can be applied to enhance the NWP, e.g. by accounting for
potentially misplaced events which can have significant im-
pact at an urban hydrology scale. Figure 7 displays the re-
sult considering the NWP maximal threat post-processing
EPS method with a 6-grid-cell radius around the catch-
ment. This approach is more conservative towards avoiding
missed events and yields higher PoD at the cost of higher
PoFD, which extends the ROC diagram. The ROC curves in
Fig. 7a show that the two approaches are complementary; the
areal overlap method provides better discrimination skill for
low PoFD whereas the maximal threat EPS post-processing
method provides better discrimination skill for higher PoFD.
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Figure 6. ROC and REV diagram for flow domain forecast based on catchment weighted areal overlap.

Figure 7. ROC and REV diagram for flow forecasts considering the two NWP post-processing methods: the maximal threat EPS method
with a neighbourhood radius of 6 grid cells in colour and the catchment weighted areal overlap method in grey colour as background.

The ROCA of each approach is respectively 0.86 and 0.91
and the ROCA merging both approaches is 0.92.

This new ROC curve results in the extension of the α-
interval with positive REV which characterizes the range of
beneficial forecast use (Fig. 7b). To ease the comparison the
area under the envelope curve of the areal overlap approach
is displayed in grey colour as background in Fig. 7b, and Ta-
ble 4 gives intervals of positive α for both approaches. The
weighted areal overlap provides a slightly better upper bound
whereas the maximal threat approach significantly expands
the interval of positive REV for low α values. Therefore, us-
ing this NWP post-processing approach increases the range
of beneficial forecast usages.

The comparison between these two NWP-post processing
approaches using the Brier Skill Score (BSS) shows a dete-
rioration of the forecast skill when using the maximal threat

approach, which has a negative BSS indicating that the fore-
cast performs worse than the reference forecast based on the
frequency of occurrence of an event (µ). This decrease in
performance can be explained by an increase in false alarms
due to the precautions towards not missing a major rain event
of this approach. This result underlines the need for an eco-
nomical assessment rather than purely forecast skills to draw
conclusions of the usefulness of a forecast for a given deci-
sion making situation.

4.2 Examples of EPS flow domain prediction

In order to illustrate the different situations of decision mak-
ing taken as a starting point for this paper (i.e. when to
switch from flow management to energy management and
vice versa) a range of 4 theoretical α-values were consid-
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Table 4. BSS and REV characteristics for the two different NWP post-processing methods.

ROCA α-interval BBS

Lower bound Upper bound

Weighted areal overlap 0.86 0.0208 0.3955 0.14
Maximal threat 6-cell radius 0.91 0.0049 0.3940 −1.52

Figure 8. REV curves for the EPS NWP post-processing maximal threat in a radius of 6 grid cells from the catchment (a, left plot) and
best decision threshold according to the α-value (b, right plot), in blue for the maximal threshold approach and in grey for the areal overlap
approach.

Table 5. Decision threshold and REV for the theoretical 4 α-values
considered, using the maximal threat post-processing method.

α REV Prediction criteria

Decision Threshold NWP post-processing

1/2 Negative Always energy objective

1/20 0.59 fEM = 11/25 Maximal Treat EPS
1/100 0.30 fEM = 1/25 Maximal Treat EPS

1/500 Negative Never energy objective

ered, Table 5. The two outer α-values yield negative REV in-
dicating that using the forecast data is not beneficial in these
cases. The two other α-values yield positive REV indicating
that using the forecast is beneficial in these cases. The de-
cision threshold (fEM) generating the highest relative benefit
based on empirical data are displayed in Fig. 8 and in Table 5.

The coupled hydro-meteorological model provides an en-
semble prediction of the flow at the catchment outlet for the
incoming 2 days. Figure 9 provides an example of predic-
tion. The first panel, Fig. 9a, displays the energy market dur-
ing those two days, providing insight in the variation of the
energy price and the CO2 footprint through the proportion
of wind energy. The shown data are based on historical val-

ues but similar information are available in real time on the
electric smart grid. The fluctuation of the energy market for
both parameters (Fig. 9a) illustrates the variation of the α-
value in relation to the potential gain during a given period.
During the first day (29 April 2015) the energy price ranges
from 24 to 32 C MWh−1 and the proportion of wind energy
varies from 15 to 49 %, whereas during the second day (30
April 2015) the energy price range from 23 to 41 C MWh−1

and the proportion of wind energy varies from 1 % to above
53 %. Hence the switch of consumption of 1 MWh can yield
up to EUR 8 during the first day and up to EUR 18 during
the second day. For comparison, the energy consumption per
m3 treated at Damhuså WWTP in 2015 was 0.261 kWh m−3

and in average 20 000 m3 are treated during a dry day. Pump-
ing and aeration of the biological treatment are the dominat-
ing energy users. The aeration of the bioreactor represents
between 50 and 70 % of process energy consumption and
largely depends on the inflow/load to the WWTP (Aymerich
et al., 2015). The potential for energy switch highly depen-
dents to the storage volume available upstream.

The North Pool Energy Market DK2, covering the Copen-
hagen area, has a Pearson correlation coefficient of −0.52
between energy price and proportion of wind energy in 2015,
indicating a moderate negative linear relationship. Hence en-
ergy consumption optimizations based on economic objec-
tives could also yield environmental benefits and vice versa.
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Figure 9. Example illustration of the EPS flow prediction system for 2 selected days, 29–30 April 2015. Energy market parameters, energy
price and proportion of wind power (1, a), ensemble flow predictions using the areal average (b) and maximal threat (c) post-processing
methods, and (d) flow domain predictions for the two post-processing methods and for each two decisions thresholds; cf. Table 5 (coloured
areas imply that an event is predicted, otherwise not).

However it should be noticed that the control of the energy
consumption based on the energy market can results in a de-
crease of the expenses together with an increase of the overall
energy consumption as observed in Aymerich et al. (2015).

Figure 9b represents the flow forecast based on the catch-
ment weighted areal overlap approach and Fig. 9c represents
the flow forecast based on the maximal threat EPS approach
with a 6-grid-cell radius. The measured flow during this pe-
riod shows two minor rain events without significant flow im-
pact the first day and a major rain event leading to high flows
exceeding the 4000 m3 h−1? in the IUDWS the second day.
Figure 9b illustrates the difficulty of the prediction to have
a correct timing, most EMs predict the high-flow event but
often too early. It can be noticed that due to the conservative-
ness of this second approach the EPS plume of flow forecasts
overestimates the observed flow (in red), which explains the
worsening of the BSS when using this approach.

The best flow domain predictions, considering a given
α, is provided by the decision threshold defined using the
REV method presented in Sect. 3.4. As displayed in Table 5,
the highest REV for α = 1/20 (respectively α = 1/100) is
achieved using the NWP post-processing approach “Max-
imal Threat EPS” with fEM =

11
25 (respectively fEM =

1
25 ).

The flow domain predictions based on these criteria and on

the EPS flow forecast displayed in Fig. 9b and c are shown by
the blue hatched (respectively plain blue) colour in Fig. 9d.

4.3 Outlooks

As mentioned in Sect. 4.2, the potential benefit from the en-
ergy consumption optimization management is largely con-
ditioned by the storage volume available upstream. A ma-
jor project is currently under implementation to comply with
new regulations on CSO. Two large pipes will be constructed
just before the inlet of the WWTP with a volume equivalent
to the daily dry weather flow to the WWTP. This large storage
volume, soon available upstream from the WWTP, provides
an opportunity for real world implementation of the concept
developed in this paper. Halvgaard et al. (2017) present a
model predictive control (MPC) to control the power con-
sumption of pumps in a sewer system and the treatment
power consumption according to electricity prices and efflu-
ent quality (nitrogen) based on a case study at Kolding. The
controller is able to balance electricity costs and treatment
quality during predicted dry weather flow periods.

The predictions and therefore the skills of the EPS are
based on a coupled meteorological and hydraulic model.
This study used a lumped conceptual hydraulic model; a

www.hydrol-earth-syst-sci.net/21/2531/2017/ Hydrol. Earth Syst. Sci., 21, 2531–2544, 2017



2542 V. Courdent et al.: A gain–loss framework based on ensemble flow forecasts

more detailed hydrological model, including stochastic pro-
cesses and on-line assimilation of flow measurements, might
improve the prediction and thereby improve the REV fur-
ther. Similarly, NWP models are continuously improving and
benefit from the constant increase of computational calcula-
tion power to enhance their resolution and ensemble size.
The techniques of data assimilation from radar measure-
ment into NWP models are also consistently improving (Ko-
rsholm et al., 2015). Weather services are collaborating to
continuously improve their meteorological models. For ex-
ample, the HIRLAM consortium which developed the model
structure of the DMI-HIRLAM-S05 NWP used in this study
is currently developing and launching the non-hydrostatic
convection-permitting HARMONIE model in cooperation
with Météo-France and ALADIN, and EPSs with forecast
horizons of up to 2 weeks are also available at the Euro-
pean level (http://www.ecmwf.int/). Therefore the accuracy
and lead time of the prediction, and hence the potential bene-
fit from the framework developed in this article, are expected
to increase in the future.

Additionally, other characteristics of NWP can be utilized.
The DMI-HIRLAM-S05 model, for example, generates a
new 54 h EPS forecast every 6 h, and thereby the successive
forecasts are overlapping each other. The forecast consis-
tency, or in reverse the “forecast jump”, provides valuable in-
formation on forecast uncertainty which could be utilized in
the decision-making process. For example, the time-lagged
method (Mittermaier, 2007) uses consecutive forecast over-
lapping to extend the EPS and enhance the predictions (i.e.
the horizon of the forecast is reduced but its ensemble size
is increased). This may increase the range of positive REV
and allow use of the concept for decisions related to other
problems than the energy optimization problem studied here.

Control systems can be decomposed into different layers
in a hierarchy. Mollerup et al. (2016) presents a methodologi-
cal approach to the design of optimized control strategies for
sewer systems. The framework presented in this paper tar-
gets the upper layer of the hierarchy presented by Mollerup
et al. (2016): the management of objectives where switch-
ing between different operational modes may take place.
Completely different optimizing control strategies, includ-
ing model predictive control techniques, may then run under
different operation conditions – such as the “flow control”
and “energy optimization” operational modes considered in
this paper. Implementing such a switching system in prac-
tice requires that the gain–loss ratio expressing the economic
consequences associated with the outcomes of the different
courses of action used for the REV is quantified, which re-
quires further research on monetization of non-market goods
(e.g. CO2 footprint or the environmental impact of CSOs)
and may depend on local circumstances.

5 Conclusions

An ensemble flow prediction system for an IUDWS was de-
veloped using the DMI-HIRLAM-S05 EPS as input to a hy-
drological model. This system was tested on an urban catch-
ment in the Copenhagen area based on recorded rainfall fore-
casts and flow data for the period from June 2014 to May
2016. Ensemble forecasting requires adaptation of the man-
agement rules in order to use probability forecasts instead
of a deterministic forecast. The usefulness of the forecast
should be evaluated not only based on its quality in terms
of traditional skill scores but also based on its economic
value for the daily decision-making process of the forecast
user considered. The decision problem considered here is the
switch from normal flow management during high-flow pe-
riods (wet weather) to smart grid energy optimization during
low-flow periods (dry weather).

This article presents a framework to support decision mak-
ing based on the prediction of the occurrence or lack of
occurrence of an event using an EPS. The outcomes (gain
for positives and loss for negatives) of the different possi-
ble courses of action are valued to determine the REV of
using the forecast. The REV is closely related to the ROC
diagram, which assesses the range of discrimination skills
of an ensemble forecast. Hence, a REV curve, as a function
of the gain / loss ratio α, can be generated for each proba-
bility threshold (fEM) of the EPS. This method was devel-
oped in order to switch the IUDWS management objective
from flow management to energy optimization, utilizing the
electric smart grid when low-flow periods are predicted. This
approach is based on daily optimization when non-events
(dry weather) are forecast and differs from previous stud-
ies based on the REV concept, which investigated mitigation
measures taking place when adverse events are forecast (e.g.
flood, tornado) using a cost–loss ratio. In our approach for a
given gain–loss ratio α, the probability threshold (fEM) cor-
responding to the highest REV, symbolized by the envelope
curve, should be applied to maximize the benefit of the op-
timization scheme. If the gain–loss ratio is outside the range
of positive REV, then using the forecast is not beneficial. The
gain–loss ratio α is a function of the potential gain from uti-
lizing the variation of the smart grid energy market, which
varies in time.

Two NWP post-processing methods were tested: (i) a real-
istic approach based on the weighted areal overlap between
the NWP grid cells and the hydrological catchment, and (ii) a
more conservative approach considering the maximal rain-
fall threat in the catchment vicinity. The second approach
leads to a deterioration of classic forecast validation scores
such as BSS due to a significant increase in the number of
false alarms. However, this approach proves to be beneficial
in regard to the decision-making process, especially when
considering a low gain–loss ratio α for which missed fore-
cast events are highly detrimental. Indeed, the maximal threat
NWP neighbourhood post-processing method improves the
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range of discrimination skill of the predictions shown on
the ROC diagram and therefore provides a larger range of
positive REV, increasing the range of beneficial forecast us-
age. This underlines the importance of assessing the forecast
usefulness based on its potential economic value rather than
solely on the usual forecast skills.
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