Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 21, issue 6
Hydrol. Earth Syst. Sci., 21, 3041–3060, 2017
https://doi.org/10.5194/hess-21-3041-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The changing water cycle of the Indo-Gangetic Plain

Hydrol. Earth Syst. Sci., 21, 3041–3060, 2017
https://doi.org/10.5194/hess-21-3041-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Jun 2017

Research article | 26 Jun 2017

Water–food–energy nexus with changing agricultural scenarios in India during recent decades

Beas Barik1, Subimal Ghosh1,2, A. Saheer Sahana1, Amey Pathak1, and Muddu Sekhar3 Beas Barik et al.
  • 1Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai – 400 076, India
  • 2Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai – 400 076, India
  • 3Department of Civil Engineering, Indian Institute of Science, Bangalore – 560 012, India

Abstract. Meeting the growing water and food demands in a densely populated country like India is a major challenge. It requires an extensive investigation into the changing patterns of the checks and balances behind the maintenance of food security at the expense of depleting groundwater, along with high energy consumption. Here we present a comprehensive set of analyses which assess the present status of the water–food–energy nexus in India, along with its changing pattern, in the last few decades. We find that with the growth of population and consequent increase in the food demands, the food production has also increased, and this has been made possible with the intensification of irrigation. However, during the recent decade (after 1996), the increase in food production has not been sufficient to meet its growing demands, precipitating a decline in the per-capita food availability. We also find a statistically significant declining trend of groundwater storage in India during the last decade, as derived from the Gravity Recovery and Climate Experiment (GRACE) satellite datasets. Regional studies reveal contrasting trends between northern and western–central India. North-western India and the middle Ganga basin show a decrease in the groundwater storage as opposed to an increasing storage over western–central India. Comparison with well data reveals that the highest consistency of GRACE-derived storage data with available well measurements is in the middle Ganga basin. After analysing the data for the last 2 decades, we further showcase that, after a drought, the groundwater storage drops but is unable to recover to its original condition even after good monsoon years. The groundwater storage reveals a very strong negative correlation with the electricity consumption for agricultural usage, which may also be considered as a proxy for groundwater pumped for irrigation in a region. The electricity usage for agricultural purposes has an increasing trend and, interestingly, it does not have any correlation with the monsoon rainfall as computed with the original or de-trended variables. This reveals an important finding that the irrigation has been intensified irrespective of rainfall. This also resulted in a decreasing correlation between the food production and monsoon rainfall, revealing the increasing dependency of agricultural activities on irrigation. We conclude that irrigation has now become essential for agriculture to meet the food demand; however, it should be judiciously regulated and controlled, based on the water availability from monsoon rainfall, specifically after the drought years, as it is essential to recover from the deficits suffered previously.

Publications Copernicus
Download
Short summary
The article summarises changing patterns of the water-food-energy nexus in India during recent decades. The work first analyses satellite data of water storage with a validation using the observed well data. Northern India shows a declining trend of water storage and western-central India shows an increasing trend of the same. Major droughts result in a drop in water storage which is not recovered due to uncontrolled ground water irrigation for agricultural activities even in good monsoon years.
The article summarises changing patterns of the water-food-energy nexus in India during recent...
Citation