Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 21, issue 6
Hydrol. Earth Syst. Sci., 21, 3199–3220, 2017
https://doi.org/10.5194/hess-21-3199-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 3199–3220, 2017
https://doi.org/10.5194/hess-21-3199-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Jun 2017

Research article | 29 Jun 2017

Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network

Cécile Pellet and Christian Hauck

Related authors

Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019,https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Warming permafrost and active layer variability at Cime Bianche, Western European Alps
P. Pogliotti, M. Guglielmin, E. Cremonese, U. Morra di Cella, G. Filippa, C. Pellet, and C. Hauck
The Cryosphere, 9, 647–661, https://doi.org/10.5194/tc-9-647-2015,https://doi.org/10.5194/tc-9-647-2015, 2015
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
A proposed method for estimating interception from near-surface soil moisture response
Subodh Acharya, Daniel McLaughlin, David Kaplan, and Matthew J. Cohen
Hydrol. Earth Syst. Sci., 24, 1859–1870, https://doi.org/10.5194/hess-24-1859-2020,https://doi.org/10.5194/hess-24-1859-2020, 2020
Short summary
Controls of fluorescent tracer retention by soils and sediments
Marcus Bork, Jens Lange, Markus Graf-Rosenfellner, and Friederike Lang
Hydrol. Earth Syst. Sci., 24, 977–989, https://doi.org/10.5194/hess-24-977-2020,https://doi.org/10.5194/hess-24-977-2020, 2020
Short summary
Field observations of soil hydrological flow path evolution over 10 Millennia
Anne Hartmann, Ekaterina Semenova, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-28,https://doi.org/10.5194/hess-2020-28, 2020
Revised manuscript accepted for HESS
Short summary
Reflection tomography of time-lapse GPR data for studying dynamic unsaturated flow phenomena
Adam R. Mangel, Stephen M. J. Moysey, and John Bradford
Hydrol. Earth Syst. Sci., 24, 159–167, https://doi.org/10.5194/hess-24-159-2020,https://doi.org/10.5194/hess-24-159-2020, 2020
Short summary
Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils
Aaron A. Mohammed, Igor Pavlovskii, Edwin E. Cey, and Masaki Hayashi
Hydrol. Earth Syst. Sci., 23, 5017–5031, https://doi.org/10.5194/hess-23-5017-2019,https://doi.org/10.5194/hess-23-5017-2019, 2019
Short summary

Cited articles

Aragones, J. L., MacDowell, L. G., and Vega, C.: Dielectric Constant of Ices and Water: A Lesson about Water Interactions, J. Phys. Chem. A, 115, 5745–5758, https://doi.org/10.1021/jp105975c, 2011.
Barthlott, C., Hauck, C., Schaedler, G., Kalthoff, N., and Kottmeier, C.: Soil moisture impacts on convective indices and precipitation over complex terrain, Meteorol. Z., 20, 185–197, https://doi.org/10.1127/0941-2948/2011/0216, 2011.
Beltrami, H.: Active layer distortion of annual air soil thermal orbits, Permafrost Periglac., 7, 101–110, https://doi.org/10.1002/(SICI)1099-1530(199604)7:2<101::AID-PPP217>3.3.CO;2-3, 1996.
Beringer, J., Lynch, A. H., Chapin, F. S., Mack, M., and Bonan, G. B.: The Representation of Arctic Soils in the Land Surface Model: The Importance of Mosses, J. Climate, 14, 3324–3335, https://doi.org/10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2, 2001.
Bircher, S., Skou, N., Jensen, K. H., Walker, J. P., and Rasmussen, L.: A soil moisture and temperature network for SMOS validation in Western Denmark, Hydrol. Earth Syst. Sci., 16, 1445–1463, https://doi.org/10.5194/hess-16-1445-2012, 2012.
Publications Copernicus
Download
Short summary
This paper presents a detailed description of the new Swiss soil moisture monitoring network SOMOMOUNT, which comprises six stations distributed along an elevation gradient ranging from 1205 to 3410 m. The liquid soil moisture (LSM) data collected during the first 3 years are discussed with regard to their soil type and climate dependency as well as their altitudinal distribution. The elevation dependency of the LSM was found to be non-linear with distinct dynamics at high and low elevation.
This paper presents a detailed description of the new Swiss soil moisture monitoring network...
Citation