Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 21, issue 10
Hydrol. Earth Syst. Sci., 21, 5009–5030, 2017
https://doi.org/10.5194/hess-21-5009-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 5009–5030, 2017
https://doi.org/10.5194/hess-21-5009-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Oct 2017

Research article | 06 Oct 2017

Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

Martin Schrön et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to revisions (further review by Editor and Referees) (26 May 2017) by Bob Su
AR by Martin Schrön on behalf of the Authors (24 Jun 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (11 Jul 2017) by Bob Su
RR by Yijian Zeng (13 Jul 2017)
RR by Anonymous Referee #4 (08 Aug 2017)
ED: Publish as is (26 Aug 2017) by Bob Su
AR by Martin Schrön on behalf of the Authors (26 Aug 2017)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron detectors. To interpret, calibrate, and validate the integral signal, it is important to account for its sensitivity to heterogeneous patterns like dry or wet spots. We show how point samples contribute to the neutron signal based on their depth and distance from the detector. This approach robustly improves the sensor performance and data consistency, and even reveals otherwise hidden hydrological features.
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron...
Citation