Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 21, issue 10
Hydrol. Earth Syst. Sci., 21, 5143–5163, 2017
https://doi.org/10.5194/hess-21-5143-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 5143–5163, 2017
https://doi.org/10.5194/hess-21-5143-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Oct 2017

Research article | 12 Oct 2017

Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

Cherry May R. Mateo et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (15 May 2017) by Ralf Merz
AR by Cherry May Mateo on behalf of the Authors (23 May 2017)  Author's response    Manuscript
ED: Publish subject to minor revisions (further review by Editor) (27 Jul 2017) by Alberto Guadagnini
AR by Cherry May Mateo on behalf of the Authors (06 Aug 2017)  Author's response    Manuscript
ED: Publish as is (12 Aug 2017) by Alberto Guadagnini
Publications Copernicus
Download
Short summary
Providing large-scale (regional or global) simulation of floods at fine spatial resolution is difficult due to computational constraints but is necessary to provide consistent estimates of hazards, especially in data-scarce regions. We assessed the capability of an advanced global-scale river model to simulate an extreme flood at fine resolution. We found that when multiple flow connections in rivers are represented, the model can provide reliable fine-resolution predictions of flood inundation.
Providing large-scale (regional or global) simulation of floods at fine spatial resolution is...
Citation