Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 21, issue 10
Hydrol. Earth Syst. Sci., 21, 5315-5337, 2017
https://doi.org/10.5194/hess-21-5315-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 5315-5337, 2017
https://doi.org/10.5194/hess-21-5315-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Oct 2017

Research article | 23 Oct 2017

Consistency assessment of rating curve data in various locations using Bidirectional Reach (BReach)

Katrien Van Eerdenbrugh1, Stijn Van Hoey2, Gemma Coxon3, Jim Freer3, and Niko E. C. Verhoest1 Katrien Van Eerdenbrugh et al.
  • 1Laboratory of Hydrology and Water Management, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
  • 2Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1071 Brussels, Belgium
  • 3School of Geographical Sciences, University of Bristol, University Road, Bristol, UK

Abstract. When estimating discharges through rating curves, temporal data consistency is a critical issue. In this research, consistency in stage–discharge data is investigated using a methodology called Bidirectional Reach (BReach), which departs from a (in operational hydrology) commonly used definition of consistency. A period is considered to be consistent if no consecutive and systematic deviations from a current situation occur that exceed observational uncertainty. Therefore, the capability of a rating curve model to describe a subset of the (chronologically sorted) data is assessed in each observation by indicating the outermost data points for which the rating curve model behaves satisfactorily. These points are called the maximum left or right reach, depending on the direction of the investigation. This temporal reach should not be confused with a spatial reach (indicating a part of a river). Changes in these reaches throughout the data series indicate possible changes in data consistency and if not resolved could introduce additional errors and biases. In this research, various measurement stations in the UK, New Zealand and Belgium are selected based on their significant historical ratings information and their specific characteristics related to data consistency. For each country, regional information is maximally used to estimate observational uncertainty. Based on this uncertainty, a BReach analysis is performed and, subsequently, results are validated against available knowledge about the history and behavior of the site. For all investigated cases, the methodology provides results that appear to be consistent with this knowledge of historical changes and thus facilitates a reliable assessment of (in)consistent periods in stage–discharge measurements. This assessment is not only useful for the analysis and determination of discharge time series, but also to enhance applications based on these data (e.g., by informing hydrological and hydraulic model evaluation design about consistent time periods to analyze).

Publications Copernicus
Download
Short summary
Consistency in stage–discharge data is investigated using a methodology called Bidirectional Reach (BReach). Various measurement stations in the UK, New Zealand and Belgium are selected based on their historical ratings information and their characteristics related to data consistency. When applying a BReach analysis on them, the methodology provides results that appear consistent with the available knowledge and thus facilitates a reliable assessment of (in)consistency in stage–discharge data.
Consistency in stage–discharge data is investigated using a methodology called Bidirectional...
Citation
Share