Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 21, 5375-5383, 2017
https://doi.org/10.5194/hess-21-5375-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
26 Oct 2017
Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo
Khan Zaib Jadoon1,a, Muhammad Umer Altaf2,3, Matthew Francis McCabe2, Ibrahim Hoteit3, Nisar Muhammad1, Davood Moghadas4, and Lutz Weihermüller5 1Department of the Civil Engineering, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
2Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
3Earth Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
4Brandenburg University of Technology, Research Center Landscape Development and Mining Landscapes, 03046 Cottbus, Germany
5Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich, GmbH, 52425 Jülich, Germany
anow at: Department of Civil Engineering, International Islamic University, Islamabad 44000, Pakistan
Abstract. A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

Citation: Jadoon, K. Z., Altaf, M. U., McCabe, M. F., Hoteit, I., Muhammad, N., Moghadas, D., and Weihermüller, L.: Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo, Hydrol. Earth Syst. Sci., 21, 5375-5383, https://doi.org/10.5194/hess-21-5375-2017, 2017.
Publications Copernicus
Download
Short summary
In this study electromagnetic induction (EMI) measurements were used to estimate soil salinity in an agriculture field irrigated with a drip irrigation system. Electromagnetic model parameters and uncertainty were estimated using adaptive Bayesian Markov chain Monte Carlo (MCMC). Application of the MCMC-based inversion to the synthetic and field measurements demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil.
In this study electromagnetic induction (EMI) measurements were used to estimate soil salinity...
Share