Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5401-2017
https://doi.org/10.5194/hess-21-5401-2017
Research article
 | 
01 Nov 2017
Research article |  | 01 Nov 2017

Field-scale water balance closure in seasonally frozen conditions

Xicai Pan, Warren Helgason, Andrew Ireson, and Howard Wheater

Related authors

High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach
Yanping Li, Zhenhua Li, Zhe Zhang, Liang Chen, Sopan Kurkute, Lucia Scaff, and Xicai Pan
Hydrol. Earth Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-2019,https://doi.org/10.5194/hess-23-4635-2019, 2019
Short summary
Efficient estimation of effective hydraulic properties of stratal undulating surface layer using time-lapse multi-channel GPR
Xicai Pan, Stefan Jaumann, Jiabao Zhang, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 3653–3663, https://doi.org/10.5194/hess-23-3653-2019,https://doi.org/10.5194/hess-23-3653-2019, 2019
Short summary
Brief communication: Estimation of hydraulic properties of active layers using ground-penetrating radar (GPR) and 2D inverse hydrological modeling
Xicai Pan, Stefan Jaumann, Jiabao Zhang, and Kurt Roth
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-77,https://doi.org/10.5194/tc-2017-77, 2017
Revised manuscript not accepted
Short summary
Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016,https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai–Tibet Plateau
Xicai Pan, Yanping Li, Qihao Yu, Xiaogang Shi, Daqing Yang, and Kurt Roth
The Cryosphere, 10, 1591–1603, https://doi.org/10.5194/tc-10-1591-2016,https://doi.org/10.5194/tc-10-1591-2016, 2016
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
Technical Note: Revisiting the general calibration of cosmic-ray neutron sensors to estimate soil water content
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024,https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Coupled hydrogeophysical inversion of an artificial infiltration experiment monitored with ground-penetrating radar: synthetic demonstration
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023,https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023,https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
A change in perspective: downhole cosmic-ray neutron sensing for the estimation of soil moisture
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023,https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Impacts of soil management and climate on saturated and near-saturated hydraulic conductivity: analyses of the Open Tension-disk Infiltrometer Meta-database (OTIM)
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023,https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary

Cited articles

Alavi, N., Warland, J. S., and Berg, A. A.: Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach, Agr. Forest Meteorol., 141, 57–66, 2006.
Barr, A. G., van der Kamp, G., Black, T. A., McCaughey, J. H., and Nesic, Z.: Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull Creek watershed 1999–2009, Agr. Forest Meteorol., 153, 3–13, 2012.
Beven, K.: Searching for the Holy Grail of scientific hydrology: Qt = (S, R, Δt)A as closure, Hydrol. Earth Syst. Sci., 10, 609–618, https://doi.org/10.5194/hess-10-609-2006, 2006.
Brocca, L., Melone, F., Moramarco, T., and Morbidelli, R.: Spatial–temporal variability of soil moisture and its estimation across scales, Water Resour. Res., 46, W02516, https://doi.org/10.1029/2009WR008016, 2010.
Burba, G.: Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Biosciences, Lincoln, NE, USA, 331 pp., 2013.
Download
Short summary
In this paper we present a case study from a heterogeneous pasture site in the Canadian prairies, where we have quantified the various components of the water balance on the field scale, and critically examine some of the simplifying assumptions which are often invoked when applying water budget approaches in applied hydrology. We highlight challenges caused by lateral fluxes of blowing snow and ambiguous partitioning of snow melt water into runoff and infiltration.