Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5415-2017
https://doi.org/10.5194/hess-21-5415-2017
Research article
 | 
06 Nov 2017
Research article |  | 06 Nov 2017

Impact of ENSO regimes on developing- and decaying-phase precipitation during rainy season in China

Qing Cao, Zhenchun Hao, Feifei Yuan, Zhenkuan Su, Ronny Berndtsson, Jie Hao, and Tsring Nyima

Abstract. This study investigated the influence of five El Niño–Southern Oscillation (ENSO) types on rainy-season precipitation in China: central Pacific warming (CPW), eastern Pacific cooling (EPC), eastern Pacific warming (EPW), conventional ENSO and ENSO Modoki. The multi-scale moving t test was applied to determine the onset and withdrawal of rainy season. Results showed that the precipitation anomaly can reach up to 30 % above average precipitation during decaying CPW and EPW phases. Developing EPW could cause decreasing precipitation over large areas in China with 10–30 % lower than average precipitation in most areas. Conventional El Niño in the developing phase had the largest influence on ENSO-related precipitation among developing ENSO and ENSO Modoki regimes. Decaying ENSO also showed a larger effect on precipitation anomalies, compared to decaying ENSO Modoki. The difference between rainy-season precipitation under various ENSO regimes may be attributed to the combined influence of anti-cyclone in the western North Pacific and the Indian monsoon. Stronger monsoon and anti-cyclone are associated with enhanced rainy-season precipitation. The results suggest a certain predictability of rainy-season precipitation related to ENSO regimes.

Download
Short summary
This study analyzed the rainy-season precipitation in China influenced by various ENSO types. The precipitation anomalies were investigated under different ENSO types, which may be attributed to the combined influence of anti-cyclone in the western North Pacific and the Indian monsoon. The results improve the understanding of linkages between the precipitation and global teleconnection patterns. The results suggest a certain predictability of flood and drought related to different ENSO types.