Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 21, 5987-6005, 2017
https://doi.org/10.5194/hess-21-5987-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
30 Nov 2017
Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach
Gorka Mendiguren, Julian Koch, and Simon Stisen Department of hydrology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Abstract. Distributed hydrological models are traditionally evaluated against discharge stations, emphasizing the temporal and neglecting the spatial component of a model. The present study widens the traditional paradigm by highlighting spatial patterns of evapotranspiration (ET), a key variable at the land–atmosphere interface, obtained from two different approaches at the national scale of Denmark. The first approach is based on a national water resources model (DK-model), using the MIKE-SHE model code, and the second approach utilizes a two-source energy balance model (TSEB) driven mainly by satellite remote sensing data. Ideally, the hydrological model simulation and remote-sensing-based approach should present similar spatial patterns and driving mechanisms of ET. However, the spatial comparison showed that the differences are significant and indicate insufficient spatial pattern performance of the hydrological model.

The differences in spatial patterns can partly be explained by the fact that the hydrological model is configured to run in six domains that are calibrated independently from each other, as it is often the case for large-scale multi-basin calibrations. Furthermore, the model incorporates predefined temporal dynamics of leaf area index (LAI), root depth (RD) and crop coefficient (Kc) for each land cover type. This zonal approach of model parameterization ignores the spatiotemporal complexity of the natural system. To overcome this limitation, this study features a modified version of the DK-model in which LAI, RD and Kc are empirically derived using remote sensing data and detailed soil property maps in order to generate a higher degree of spatiotemporal variability and spatial consistency between the six domains. The effects of these changes are analyzed by using empirical orthogonal function (EOF) analysis to evaluate spatial patterns. The EOF analysis shows that including remote-sensing-derived LAI, RD and Kc in the distributed hydrological model adds spatial features found in the spatial pattern of remote-sensing-based ET.


Citation: Mendiguren, G., Koch, J., and Stisen, S.: Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach, Hydrol. Earth Syst. Sci., 21, 5987-6005, https://doi.org/10.5194/hess-21-5987-2017, 2017.
Publications Copernicus
Download
Short summary
The present study is focused on the spatial pattern evaluation of two models and describes the similarities and dissimilarities. It also discusses the factors that generate these patterns and proposes similar new approaches to minimize the differences. The study points towards a new approach in which the spatial component of the hydrological model is also calibrated and taken into account.
The present study is focused on the spatial pattern evaluation of two models and describes the...
Share