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Abstract. We undertook a comprehensive evaluation of 22
gridded (quasi-)global (sub-)daily precipitation (P ) datasets
for the period 2000–2016. Thirteen non-gauge-corrected
P datasets were evaluated using daily P gauge observa-
tions from 76 086 gauges worldwide. Another nine gauge-
corrected datasets were evaluated using hydrological mod-
eling, by calibrating the HBV conceptual model against
streamflow records for each of 9053 small to medium-
sized (< 50 000 km2) catchments worldwide, and compar-
ing the resulting performance. Marked differences in spatio-
temporal patterns and accuracy were found among the
datasets. Among the uncorrected P datasets, the satellite- and
reanalysis-based MSWEP-ng V1.2 and V2.0 datasets gener-
ally showed the best temporal correlations with the gauge ob-
servations, followed by the reanalyses (ERA-Interim, JRA-
55, and NCEP-CFSR) and the satellite- and reanalysis-based
CHIRP V2.0 dataset, the estimates based primarily on pas-
sive microwave remote sensing of rainfall (CMORPH V1.0,
GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil
moisture (SM2RAIN-ASCAT), and finally, estimates based
primarily on thermal infrared imagery (GridSat V1.0, PER-
SIANN, and PERSIANN-CCS). Two of the three reanaly-
ses (ERA-Interim and JRA-55) unexpectedly obtained lower
trend errors than the satellite datasets. Among the corrected
P datasets, the ones directly incorporating daily gauge data
(CPC Unified, and MSWEP V1.2 and V2.0) generally pro-

vided the best calibration scores, although the good perfor-
mance of the fully gauge-based CPC Unified is unlikely to
translate to sparsely or ungauged regions. Next best results
were obtained with P estimates directly incorporating tem-
porally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2,
TMPA 3B42 V7, and WFDEI-CRU), which in turn outper-
formed the one indirectly incorporating gauge data through
another multi-source dataset (PERSIANN-CDR V1R1). Our
results highlight large differences in estimation accuracy,
and hence the importance of P dataset selection in both re-
search and operational applications. The good performance
of MSWEP emphasizes that careful data merging can ex-
ploit the complementary strengths of gauge-, satellite-, and
reanalysis-based P estimates.

1 Introduction

Precipitation (P ) is arguably the most important driver of
the hydrological cycle, but also one of the most challeng-
ing to estimate (Daly et al., 2008; Michaelides et al., 2009;
Kidd and Levizzani, 2011; Tapiador et al., 2012). Over recent
decades, several gridded P datasets have been developed
that are suitable for large-scale hydrological applications (for
overviews, see Table 1, Beck et al., 2017b, http://ipwg.isac.
cnr.it, and http://reanalyses.org). The datasets differ in terms
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of design objective (temporal homogeneity, instantaneous ac-
curacy, or both), data sources (radar, gauge, satellite, anal-
ysis, or reanalysis, or combinations thereof), spatial resolu-
tion (from 0.05 to 2.5◦), spatial coverage (from continental to
fully global), published temporal resolution (from 30 min to
monthly), temporal span (from∼ 1 to 115 years), and latency
(from ∼ 3 h to several years).

A plethora of studies addressed the important task of
evaluating these P datasets to understand their respective
advantages and limitations (see reviews by Gebremichael,
2010; Maggioni et al., 2016). Most studies assessed accu-
racy using independent gauge observations (e.g., Hirpa et al.,
2010; Buarque et al., 2011; Bumke et al., 2016; Alijanian
et al., 2017) or gauge-adjusted radar fields (e.g., AghaK-
ouchak et al., 2011; Islam et al., 2012), while others merely
compared their spatio-temporal patterns (e.g., Kidd et al.,
2013). Still others quantified the performance of different P
datasets using hydrological modeling, by comparing simu-
lated and observed values of river discharge (Q; e.g., Col-
lischonn et al., 2008; Behrangi et al., 2011; Bitew et al.,
2012; Falck et al., 2015) or soil moisture (e.g., Pan et al.,
2010; Albergel et al., 2013; Martens et al., 2017). More re-
cently, Massari et al. (2017) assessed the performance of
different P datasets using triple collocation. Marked differ-
ences in spatio-temporal P patterns and accuracy have been
found among the datasets, even among those employing the
same data sources. This highlights the critical importance of
dataset choice for research and operational applications alike.

Previous evaluation studies used a wide variety of evalua-
tion approaches and performance metrics (Ebert, 2007; Ge-
bremichael, 2010; Loew et al., 2017). However, many stud-
ies considered only a single P dataset (e.g., Scheel et al.,
2011; Nair and Indu, 2017) or disregarded (re)analysis-based
P datasets (e.g., Moazami et al., 2013; Mei et al., 2014;
Zambrano-Bigiarini et al., 2017), despite their demonstrated
superior performance in cold climates (Ebert et al., 2007;
Beck et al., 2017b; Massari et al., 2017). In addition, some
studies re-used gauge observations already incorporated in
some of the P datasets to determine their accuracy (e.g.,
Chen et al., 2013; Ashouri et al., 2016; Zambrano-Bigiarini
et al., 2017), precluding independent validation. Further-
more, to our knowledge, so far no study has accounted for
differences in the exact UTC boundary of the 24 h accu-
mulation period of daily gauge reports when evaluating P
datasets, potentially confounding the results. Moreover, stud-
ies employing hydrological modeling generally used Q ob-
servations from a small number of catchments (e.g., Bitew
et al., 2012, and Tang et al., 2016; both used only one) and
did not attempt to recalibrate the hydrological model for each
P dataset individually (e.g., Su et al., 2008; Li et al., 2013),
leading to combined rainfall and model uncertainty that is
not easily interpreted. Finally, many have a regional (sub-
continental) focus (Maggioni et al., 2016), and therefore it is
not clear to what extent the results can be generalized.

Nevertheless, there have also been several (quasi-)global
P dataset evaluation studies that produced general insights
(e.g., Adler et al., 2001; Fekete et al., 2004; Voisin et al.,
2008; Bosilovich et al., 2008; Tian and Peters-Lidard, 2010;
Lorenz and Kunstmann, 2012; Yong et al., 2015; Herold
et al., 2015; Gehne et al., 2016; Massari et al., 2017). These
studies revealed that satellites (reanalyses) exhibit superior
performance at low (high) latitudes dominated by intense, lo-
calized convective (persistent, large-scale stratiform) P sys-
tems. However, none of these studies took advantage of
the vast number of P gauge observations contained in the
freely available GHCN-D (Menne et al., 2012) and GSOD
(https://data.noaa.gov) databases. Among the only two stud-
ies employing hydrological modeling, Fekete et al. (2004)
performed monthly simulations and did not compare the re-
sults against observed Q, while Voisin et al. (2008) used
monthly observed Q data from only nine very large catch-
ments (> 290 000 km2). Moreover, several promising re-
cently released or revised P datasets, such as CHIRPS V2.0,
MSWEP V2.0, and PERSIANN-CDR V1R1 (see Table 1),
have not been thoroughly evaluated yet at a (quasi-)global
scale.

Our objective was to undertake the most comprehensive
global-scale P dataset evaluation to date. We evaluated 13
non-gauge-corrected P datasets using daily P gauge obser-
vations from 76 086 gauges worldwide. Another nine gauge-
corrected P datasets were evaluated using hydrological mod-
eling for 9053 catchments (< 50 000 km2) worldwide, by cal-
ibrating a hydrological model. The expectation is that such a
large number of P datasets and large number of observations
should lead to more generally valid conclusions and allow us
to explicitly compare the performance among climate types
and regions (Andréassian et al., 2007; Gupta et al., 2014).

2 Data and methods

2.1 P datasets

Table 1 presents the 22 gridded P datasets included in
the evaluation. The datasets were classified as either uncor-
rected, meaning that their temporal dynamics depend en-
tirely on satellite and/or reanalysis data, or gauge-corrected,
meaning that their temporal dynamics depend at least partly
on gauge data (hence precluding an independent evaluation
using P gauge observations). We included seven datasets
based exclusively on satellite data (CMORPH V1.0, GSMaP,
GridSat V1.0, PERSIANN, PERSIANN-CCS, SM2RAIN-
ASCAT, and TMPA 3B42RT V7), three based exclusively on
reanalysis data (ERA-Interim, JRA-55, and NCEP-CFSR),
and three incorporating both satellite and reanalysis data
(CHIRP V2.0, and MSWEP-ng V1.2 and V2.0). Among the
gauge-corrected datasets, four combined gauge and satel-
lite data (CMORPH-CRT, GPCP-1DD V1.2, PERSIANN-
CDR V1R1, and TMPA 3B42 V7), one combined gauge
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and reanalysis data (WFDEI-CRU), while three combined
gauge, satellite, and reanalysis data (CHIRPS V2.0, and
MSWEP V1.2 and V2.0). We also included a fully gauge-
based dataset (CPC Unified). For clarity and reproducibil-
ity, we report dataset version numbers throughout the study
for the datasets for which this information was available. We
only included datasets with a temporal span of > 8 years.

2.2 Performance evaluation using gauge observations

The performance of the 13 uncorrected P datasets (see Ta-
ble 1) was evaluated using daily gauge observations from
across the globe. Our collection of gauge observations was
compiled from the Global Historical Climatology Network-
Daily (GHCN-D) database (Menne et al., 2012), the Global
Summary of the Day (GSOD) database (https://data.noaa.
gov), the Latin American Climate Assessment & Dataset
(LACA&D) database (http://lacad.ciifen-int.org), the Chile
Climate Data Library (http://www.climatedatalibrary.cl), and
national databases for Mexico, Brazil, Peru, and Iran. To
discard erroneous observations, each gauge record was sub-
jected to several quality checks as described in Beck (2017).
Only gauges with > 365 days of valid data (not necessarily
consecutive) during 2000–2016 were retained. To minimize
temporal mismatches in gauge and gridded P time series, we
used the gauge reporting times from Beck (2017) to shift the
records of gauges with reporting times > +12 h UTC back-
ward by 1 day, and the records of gauges with reporting times
< −12 h UTC forward by 1 day. In total 76 086 gauges had
sufficient quality-controlled data for the evaluation.

We considered the following five performance metrics
to evaluate the P datasets in terms of temporal dynam-
ics: (i) Pearson linear correlation coefficient (R) calculated
for 3-day means (R3 day); (ii) R calculated for monthly
means (Rmonthly); (iii) R calculated for 6-month Standard-
ized Precipitation Index values (RSPI−6; Hayes et al., 1999);
(iv) mean absolute error (MAE; mm month−1) for monthly
means; and (v) the trend error (the difference between gauge-
and dataset-based linear regression slopes calculated from
annual anomalies; % yr−1). We opted for MAE instead of
the more widely used root mean square error (RMSE) be-
cause the errors are unlikely to follow a normal distribution
(Chai and Draxler, 2014; Willmott et al., 2017). We used 3-
day rather than daily means for R3 day to minimize the im-
pact of any residual mismatches in the UTC boundary of the
24 h accumulation period between the gauges and datasets.
The R3 day metric was only calculated if ≥ 60 3-day con-
temporaneous gauge and dataset values were available, while
the Rmonthly, RSPI−6, and MAE metrics were only calculated
if ≥ 12 monthly contemporaneous gauge and dataset values
were available.

To evaluate the P datasets in terms of long-term mean
climate indices, we considered the following four metrics:
(i) long-term relative bias, defined as [s− o]/ [s+ o], where
s and o represent the dataset- and gauge-based long-term

means, respectively; (ii) annual number of dry days error (us-
ing a 0.5 mm d−1 threshold to identify dry days, similar to
Akinremi et al., 1999, Haylock et al., 2008, and Driouech
et al., 2009); and (iii) 99th and 99.9th percentile daily P er-
ror (mm d−1). The bias and trend error metrics were only
calculated if > 5 years of daily contemporaneous gauge and
dataset values were available.

2.3 Performance evaluation using hydrological
modeling

The performance of the nine gauge-corrected P datasets
(see Table 1) was evaluated using hydrological modeling for
9053 catchments. Our collection ofQ observations was com-
piled from the same three sources as Beck et al. (2015), viz.
(i) the US Geological Survey (USGS) Geospatial Attributes
of Gages for Evaluating Streamflow (GAGES)-II database
(Falcone et al., 2010); (ii) the Global Runoff Data Cen-
tre (GRDC; http://www.bafg.de/GRDC/); and (iii) the Aus-
tralian Peel et al. (2000) database. We only used catchments
< 50 000 km2 because applying a daily lumped hydrological
model in very large catchments would result in spatial aver-
aging of the forcings over very large areas, confounding the
daily runoff generation and water balance calculations. In ad-
dition, catchments were required to have a Q record length
> 365 days (not necessarily consecutive) during 2000–2012
(the common temporal coverage of the P datasets), result-
ing in 9053 catchments that were suitable for the evaluation
(5th, 50th, and 95th catchment-size percentiles equal to 9,
633, and 18 468 km2, respectively).

For each catchment, the HBV conceptual hydrological
model (Bergström, 1992; Seibert and Vis, 2012) was cal-
ibrated in a lumped fashion against Q observations using
daily P time series from each of the datasets to force the
model. The model was selected because of its agility, com-
putational efficiency, and widespread successful application
(e.g., Te Linde et al., 2008; Deelstra et al., 2010; Plesca et al.,
2012; Beck et al., 2013; Valéry et al., 2014; Vetter et al.,
2015; Beck et al., 2017a). For the calibration, we employed
the (µ+ λ) evolutionary algorithm (Ashlock, 2010; Fortin
et al., 2012) with the population size (µ) set to 20, the re-
combination pool size (λ) set to 40, and the number of gen-
erations set to 12 (amounting to 480 model runs per catch-
ment per P dataset and approximately 40 million model runs
in total). See Beck et al. (2016) and (2017b) for more details
on the hydrological model, calibration algorithm, model pa-
rameter ranges, Q observations, Ep forcing, and Ta forcing.
We recognize that using data from different sources may bias
results as the water balances are unlikely to be closed.

As an objective function we used the Nash and Sutcliffe
(1970) efficiency (NSE) computed between 3-day mean sim-
ulated and observedQ time series. We used the NSE, despite
the criticism it has received (e.g., Schaefli and Gupta, 2007;
Jain and Sudheer, 2008; Criss and Winston, 2008; Gupta
et al., 2009), because (i) it is highly sensitive to peak flows
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(Krause et al., 2005), which is desirable for this study given
that peak flows are primarily driven by the precipitation forc-
ing, whereas low flows are primarily driven by the hydrolog-
ical model structure and parameters; (ii) besides peak flows,
NSE is also sensitive to the long-term bias (Gupta et al.,
2009), another important feature of the hydrograph primarily
influenced by the precipitation forcing; and (iii) most hydrol-
ogists and meteorologists are familiar with the NSE (Mori-
asi et al., 2007), facilitating the interpretation of the obtained
values. We used 3-day rather than daily mean Q time se-
ries for the NSE calculation to reduce the impact of temporal
mismatches in simulated and observed Q peaks. A higher
calibration NSE generally implies that the P dataset in ques-
tion is more consistent with the Q observations and poten-
tial evaporation (Ep) estimates and thus that the P dataset is
more accurate.

3 Results and discussion

3.1 Performance for temporal dynamics

The temporal dynamics of the 13 uncorrected P datasets
were evaluated using daily P observations from 76 086
gauges around the globe. Table 2 presents summary statis-
tics separately for the gauges located at latitudes < 40◦ for
all datasets, and for the gauges located at latitudes ≥ 40◦

only for the datasets covering the entire terrestrial surface
(i.e., MSWEP-ng V1.2 and V2.0, and the reanalyses). In
terms of temporal correlations (R3 day,Rmonthly, andRSPI−6),
the satellite- and reanalysis-based MSWEP-ng datasets per-
formed overall slightly better than the reanalyses (ERA-
Interim, JRA-55, and NCEP-CFSR) and the satellite- and
reanalysis-based CHIRP V2.0 dataset, which in turn per-
formed slightly better than the satellite datasets based pri-
marily on passive microwave retrievals (CMORPH V1.0,
GSMaP V5/6, and TMPA 3B42RT V7) and near-surface
soil moisture (SM2RAIN-ASCAT), which in turn performed
slightly better than the satellite datasets based primarily
on thermal infrared imagery (GridSat V1.0, PERSIANN,
and PERSIANN-CCS). The high correlations obtained using
both versions of MSWEP-ng underscore the effectiveness
of merging multiple satellite and reanalysis datasets (Beck
et al., 2017b). Indeed, Ciabatta et al. (2017) found the soil
moisture-based rainfall dataset SM2RAIN-CCI to exhibit
considerably better 5-day correlations with MSWEP V1.2
than with the comprehensive gauge-based GPCC dataset
(Schneider et al., 2014), even though the latter was used to
train the SM2RAIN algorithm. In agreement with our re-
sults, Stillman et al. (2016) found reanalyses to outperform
infrared- and passive microwave-based satellite datasets in
Arizona. SM2RAIN-ASCAT was found to perform simi-
larly to TMPA 3B42RT V7, in agreement with Brocca et al.
(2014), suggesting that soil moisture-based approaches pro-
vide a promising additional source of rainfall estimates.

The better performance of the microwave-based datasets
compared to infrared-based ones is in line with previous eval-
uations (e.g., Hirpa et al., 2010; Peña Arancibia et al., 2013;
Cattani et al., 2016) and attributed to the indirect relation-
ship between cloud-top infrared brightness temperatures and
surface rainfall (Stephens and Kummerow, 2007). Contrary
to expectation, PERSIANN-CCS attained lower median cor-
relations than both GridSat V1.0 and PERSIANN, despite
using a more sophisticated algorithm and higher spatial res-
olution (Hong et al., 2004). This indicates that a higher spa-
tial resolution does not necessarily lead to more skillful es-
timates, and that there may be limited additional value to
be gained from extracting cloud-patch characteristics. Grid-
Sat V1.0 P estimates have been derived by a cumulative dis-
tribution function (CDF) matching the entire period of in-
frared data to a reference P distribution. Better results might
be obtained by CDF matching on a monthly or seasonal cli-
matological basis, to account for intra-annual variability in
the infrared–P relationship.

Figure 1 presents global R3 day maps for a selection of
eight P datasets, permitting a geographical interpretation
of the results (see the Supplement for global maps of the
other performance metrics). All datasets performed relatively
poorly (R3 day < 0.5) in arid and tropical regions, due to the
often highly localized and shortlived nature of the convec-
tive rainfall that dominates (Cecil et al., 2014). Sub-cloud
evaporation of falling rain potentially constitutes an addi-
tional confounding factor in arid regions (Dinku et al., 2016).
Africa showed the lowest R3 day values overall, probably
due to the high prevalence of convective rain events over
most of the continent (Cecil et al., 2014). Conversely, all
datasets performed relatively well (R3 day ≥ 0.5) in moist
mid-latitude regions with mild winters (e.g., the southeast-
ern US, eastern South America, and eastern China). In ac-
cordance with several previous global evaluations (e.g., Bar-
rett et al., 1994; Xie and Arkin, 1997; Adler et al., 2001;
Ebert et al., 2007; Massari et al., 2017), the reanalyses ex-
hibited lower skill levels than the microwave- and infrared-
based satellite datasets in the tropics, whereas the opposite
is true for colder regions (latitudes > 40◦). The compara-
tively high skill of the reanalyses in colder regions reflects
the ability of atmospheric models to simulate synoptic-scale
weather systems (Haiden et al., 2012; Zhu et al., 2014). The
comparatively low skill of the reanalyses in the tropics is at-
tributable to deficiencies in the sub-grid convection param-
eterization schemes (Arakawa, 2004), as well as issues in
the land surface parameterization and unrealistic strengthen-
ing and northward displacement of the monsoon cycle (Di
Giuseppe et al., 2013). Multi-scale modeling frameworks in-
corporating high-resolution (< 4 km), convection-permitting
models, which negate the need for sub-grid convection pa-
rameterization schemes, provide a promising way forward in
this regard (Prein et al., 2015; Clark et al., 2016).

MSWEP V2.0 obtained lower mean annual P trend errors
than the other P datasets (Table 2 and Fig. S5 in the Supple-

www.hydrol-earth-syst-sci.net/21/6201/2017/ Hydrol. Earth Syst. Sci., 21, 6201–6217, 2017



6206 H. E. Beck et al.: Global evaluation of 22 precipitation datasets

Table
2.M

edian
values

ofthe
perform

ance
m

etrics
forthe

uncorrected
P

datasets
based

on
daily

P
observations

from
76

086
gauges

around
the

globe.Statistics
w

ere
notshow

n
forthe

satellite-based
P

datasets
forthe

group
ofgauges

located
atlatitudes

≥
40
◦.Forallperform

ance
m

etrics,w
ith

the
exception

of
R

3
day ,

R
m

onthly ,and
R

SPI−
6 ,a

low
ervalue

represents
better

perform
ance.V

alues
in

bold
represent

the
best

score
for

each
m

etric.See
the

Supplem
ent

for
global

m
aps

w
ith

scores
for

the
perform

ance
m

etrics
for

a
selection

of
eight

P

datasets.

C
H

IR
P

C
M

O
R

PH
E

R
A

-
G

ridSat
G

SM
aP

JR
A

-55
M

SW
E

P-ng
M

SW
E

P-ng
N

C
E

P-C
FSR

PE
R

S.
PE

R
SIA

N
N

-
SM

2R
A

IN
-

T
M

PA
3B

42R
T

V
2.0

V
1.0

Interim
V

1.0
V

5/6
V

1.2
V

2.0
C

C
S

A
SC

A
T

V
7

G
auges

located
atlatitudes<

40
◦

(n
=

51
271)

R
3

day
(–)

0.55
0.53

0.59
0.44

0.54
0.56

0.67
0.64

0.57
0.47

0.42
0.52

0.52
R

m
onthly

(–)
0.74

0.69
0.75

0.60
0.69

0.75
0.82

0.81
0.75

0.62
0.59

0.68
0.69

R
SPI−

6
(–)

0.71
0.65

0.74
0.60

0.67
0.72

0.81
0.80

0.72
0.58

0.56
0.68

0.66
M

A
E

(m
m

m
onth
−

1)
30.54

37.81
31.41

43.79
36.10

32.87
26.96

27.99
32.32

42.53
45.51

36.67
37.46

Trend
error(%

yr
−

1)
1.87

2.23
1.97

2.34
3.34

1.91
1.61

1.53
3.56

2.68
2.46

3.39
2.14

B
ias

(–)
0.06

0.14
0.11

0.07
0.13

0.11
0.06

0.06
0.10

0.17
0.17

0.14
0.11

A
nnualdry

days
error(days)

73.85
15.77

47.49
21.55

20.90
43.22

65.06
10.46

37.95
27.65

28.49
112.36

17.63
99th

percentile
error(m

m
d
−

1)
13.02

7.27
13.73

4.71
7.54

8.71
11.01

4.59
7.37

9.69
8.97

26.00
6.18

99.9th
percentile

error(m
m

d
−

1)
34.65

17.21
27.82

15.87
18.54

24.66
29.30

14.90
16.09

21.64
20.24

63.38
15.83

G
auges

located
atlatitudes

≥
40
◦

(n
=

24
815)

R
3

day
(–)

–
–

0.68
–

–
0.67

0.74
0.72

0.66
–

–
–

–
R

m
onthly

(–)
–

–
0.78

–
–

0.79
0.84

0.83
0.73

–
–

–
–

R
SPI−

6
(–)

–
–

0.77
–

–
0.78

0.82
0.82

0.73
–

–
–

–
M

A
E

(m
m

m
onth
−

1)
–

–
21.56

–
–

24.17
19.25

19.70
26.60

–
–

–
–

Trend
error(%

yr
−

1)
–

–
1.41

–
–

1.35
1.27

1.20
2.20

–
–

–
–

B
ias

(–)
–

–
0.09

–
–

0.10
0.05

0.05
0.11

–
–

–
–

A
nnualdry

days
error(days)

–
–

45.85
–

–
41.93

58.14
7.79

55.79
–

–
–

–
99th

percentile
error(m

m
d
−

1)
–

–
6.26

–
–

3.80
6.10

3.06
3.59

–
–

–
–

99.9th
percentile

error(m
m

d
−

1)
–

–
15.95

–
–

12.52
16.80

9.22
9.83

–
–

–
–

Hydrol. Earth Syst. Sci., 21, 6201–6217, 2017 www.hydrol-earth-syst-sci.net/21/6201/2017/



H. E. Beck et al.: Global evaluation of 22 precipitation datasets 6207

Figure 1. For a selection of the evaluated uncorrected P datasets, temporal correlations between 3-day mean gauge- and dataset-based P
time series (R3 day). Each data point represents a gauge. See the Supplement for global maps of the other performance metrics.
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ment). Two of the three reanalyses (ERA-Interim and JRA-
55) provided more reliable trends than the satellite datasets,
contrary to the common assumption that reanalyses tend to
contain temporal discontinuities due to changes in the as-
similated observations (Bengtsson et al., 2004; Lorenz and
Kunstmann, 2012; Kang and Ahn, 2015). However, our eval-
uation covers a relatively short period (2000–2016) during
which the assimilated observations did not change consid-
erably (Saha et al., 2010; Dee et al., 2011; Kobayashi et al.,
2015). Among the satellite datasets, SM2RAIN-ASCAT pro-
vided the least accurate P trends, probably due to the use
of two ASCAT sensors after 2013 (on-board MetOp-A and
MetOp-B) which artificially increased rainfall amounts ob-
tained using SM2RAIN (separate calibrations for 2007–2012
and 2013–2015 are necessary but yet to be performed).
Among the reanalyses, NCEP-CFSR performed worst. Fol-
lowing previous authors (Saha et al., 2010; Wang et al.,
2013), we speculate that this may be attributable to the six
parallel-run streams of analysis covering different periods,
which have been combined to generate the final dataset. The
relatively small mean annual P trend errors obtained for the
different datasets (ranging from 1.53 to 3.56 % yr−1) provide
some confidence in the ability to infer significant trends from
the various datasets. However, trends for variables measured
over shorter temporal scales (e.g., annual maxima or per-
centiles) are likely to be subject to much greater uncertainty.
We expect the dataset performance ranking to be similar for
the period prior to the year 2000; however, additional studies
are necessary to confirm this.

3.2 Performance for climate indices

The performance of the 13 uncorrected P datasets in terms of
several long-term climate indices is summarized in Table 2,
listing summary statistics for P gauges at latitudes < 40 and
≥ 40◦ (for the five datasets covering the entire terrestrial sur-
face), respectively. In terms of bias, the reanalyses performed
better overall than the satellite datasets (Table 2). Although
CHIRP V2.0, GridSat V1.0, and MSWEP-ng V1.2 and V2.0
obtained the best bias scores, these datasets use the gauge-
based CHPclim (Funk et al., 2015b) or WorldClim (Fick and
Hijmans, 2017) datasets to determine their long-term mean.
The spread in the range of bias scores among the datasets was
generally greatest over topographically complex regions (no-
tably the Rockies, Andes, and Hindu Kush), and in arid re-
gions (notably the Sahara and the Arabian and Gobi deserts;
Fig. S6), demonstrating the particular difficulty of estimating
P in these regions (Fekete et al., 2004; Hirpa et al., 2010;
Xu et al., 2017; Kim et al., 2017). All fully global datasets
exhibited positive biases at high northern latitudes, probably
because the P gauge data used for evaluation were not cor-
rected for wind-induced under-catch (Groisman and Legates,
1994; Rasmussen et al., 2012; Kauffeldt et al., 2013).

In terms of the annual number of dry days, the datasets
exhibited a particularly large spread in performance, with

MSWEP-ng V2.0 outperforming the other datasets by a sub-
stantial margin (Table 2 and Fig. S7). The dramatic improve-
ment in MSWEP-ng V2.0 compared to V1.2 is mainly at-
tributable to the CDF corrections introduced in V2, which
eliminate the drizzle caused by averaging multiple data
sources (Beck, 2017). The infrared- and microwave-based
satellite datasets also performed reasonably well, although
the P frequency was generally overestimated at low and
mid latitudes and underestimated at high latitudes, reflecting
the difficulty of detecting P signals at high latitudes (Fer-
raro et al., 1998; Ebert et al., 2007; Kidd and Levizzani,
2011; Kidd et al., 2012; Laviola et al., 2013). Conversely,
the reanalyses consistently underestimated the number of dry
days across the globe, due to the presence of spurious driz-
zle caused by deficiencies in the representation and/or pa-
rameterization of the physical processes governing P gen-
eration (Zolina et al., 2004; Lopez, 2007; Sun et al., 2006;
Skok et al., 2015). SM2RAIN-ASCAT also consistently un-
derestimated the number of dry days due to the presence of
spurious drizzle, in this case due to the relatively noisy soil
moisture retrievals (Crow et al., 2011; Brocca et al., 2014)
and the use of the already fairly wet ERA-Interim dataset
for the algorithm calibration. CHIRP V2.0 also exhibited too
few dry days, which is attributed to the use of linear regres-
sion equations to estimate 5-day mean P from infrared-based
cold-cloud duration values (Funk et al., 2015a). Forcing a hy-
drological model with P data overestimating the frequency
of low-intensity rainfall events is likely to result in overesti-
mated evaporation and underestimated runoff, particularly in
regions with high soil or canopy water storage capacities.

The 99th and 99.9th percentile daily P errors measure
the error in the magnitude of storms with return periods of
100 days and 2.7 years, respectively (Table 2 and Figs. S8
and S9, respectively). MSWEP-ng V2.0 performed best in
this respect, whereas CHIRP V2.0, the reanalyses, MSWEP-
ng V1.2, and particularly SM2RAIN-ASCAT consistently
underestimated the 99th and 99.9th percentile storm magni-
tudes. However, some degree of underestimation would be
expected, given the spatial-scale mismatch between gauge
observations and grid-cell averages (see, e.g., Maraun, 2013),
particularly for P datasets with a coarse spatial resolution
(see Table 1). Nevertheless, for the reanalyses the underes-
timation is probably primarily attributable to the aforemen-
tioned model uncertainties. For MSWEP-ng V1.2, it is due
to the attenuating effect of merging multiple data sources
(Beck et al., 2017b). For SM2RAIN-ASCAT, the strong un-
derestimation of storm magnitudes may at least partly be
due to signal loss induced by soil saturation (Brocca et al.,
2014). Among the microwave- and infrared-based satellite
datasets, PERSIANN-CCS showed the greatest spatial vari-
ability in storm magnitude bias. The generally strong differ-
ences in spatial performance patterns among datasets high-
light the difficulty of generalizing the findings of regional
(sub-continental) evaluation studies.

Hydrol. Earth Syst. Sci., 21, 6201–6217, 2017 www.hydrol-earth-syst-sci.net/21/6201/2017/



H. E. Beck et al.: Global evaluation of 22 precipitation datasets 6209

3.3 Performance evaluation using hydrological
modeling

The performance of the nine gauge-corrected P datasets
(see Table 1) was evaluated using hydrological modeling
for 9053 catchments around the globe. Table 3 presents
median calibration NSE scores obtained using the differ-
ent P datasets for different climate zones. The overall
performance ranking of the datasets from best to worst
(% of catchments in which the dataset performed best be-
tween parentheses) is MSWEP V2.0 (45.5 %), MSWEP V1.2
(21.5 %), CPC Unified (15.9 %), WFDEI-CRU (5.0 %),
TMPA 3B42 V7 (3.3 %), CMORPH-CRT V1.0 (2.6 %),
CHIRPS V2.0 (2.5 %), PERSIANN-CDR V1R1 (2.1 %), and
GPCP-1DD V1.2 (1.6 %). Thus, the datasets directly incor-
porating daily gauge data (CPC Unified, and MSWEP V1.2
and V2.0) overall outperformed the ones directly incorpo-
rating 5-day (CHIRPS V2.0) or monthly (GPCP-1DD V1.2,
TMPA 3B42 V7, and WFDEI-CRU) gauge data, which in
turn outperformed PERSIANN-CDR V1R1. Rather than us-
ing gauge observations directly for corrections, PERSIANN-
CDR V1R1 is adjusted to match the satellite- and gauge-
based GPCP dataset (monthly temporal and 2.5◦ spatial
resolution). It is noted that some of the datasets, such as
CHIRPS V2.0 and PERSIANN-CDR V1R1, have not been
specifically designed to provide the best instantaneous accu-
racy, but rather to achieve the most temporally homogeneous
record possible. Furthermore, the good performance of the
exclusively gauge-based CPC Unified is unlikely to general-
ize to regions with sparse rain gauge networks.

Figure 2 presents global maps with calibration NSE values
obtained for a selection of the best performing P datasets,
while Fig. 3 shows which of these P datasets obtained the
highest calibration NSE for each catchment. All P datasets
provided low calibration NSE scores (< 0.3) over the US
Great Plains, consistent with several previous studies us-
ing different hydrological models and forcing datasets (e.g.,
Newman et al., 2015; Bock et al., 2016; Essou et al., 2016).
It reflects the spatio-temporally highly intermittent rainfall
regime combined with a strongly nonlinear rainfall–runoff
response (Pilgrim et al., 1988). Low calibration scores were
also found in northern Alaska, presumably due to P under-
estimation (Kauffeldt et al., 2013); in Namibia and Zambia,
probably partly due to the importance of convective rainfall
and partly due to the Q data quality (Li et al., 2013); and
in Hawaii, which we suspect are due to flow overestimations
caused by (i) erroneous rating curves, as visual inspection of
the records revealed the presence of drift errors, and (ii) sub-
marine groundwater discharge (Garrison et al., 2003), which
is not explicitly accounted for by HBV. In North America,
Europe, Japan, Australia, New Zealand, and southern and
western Brazil, MSWEP V2.0 generally exhibited the best
performance, whereas in Central America, and in central and
eastern Brazil, CHIRPS V2.0 tended to perform best. No
obviously best estimate could be identified for Africa, em-

phasizing the challenge of hydrological modeling in Africa
(Sylla et al., 2013; Beck et al., 2017a). In summary, there
are some P datasets that consistently outperform others re-
gionally, but there is not one that performs best everywhere
(Barrett et al., 1994).

The good performance obtained for CPC Unified,
CHIRPS V2.0, and MSWEP V1.2 and V2.0 underscores
the importance of using sub-monthly gauge observations to
improve Q simulations. Few P datasets currently incorpo-
rate sub-monthly gauge data, possibly because of the bet-
ter global-scale availability of monthly gauge data, the lack
of reliable information on the 24 h accumulation time for
the large majority of gauges across the globe, and the dif-
ficulty of applying daily rather than monthly gauge correc-
tions (Vila et al., 2009). However, a wealth of daily gauge
data is currently freely available (Menne et al., 2012; Funk
et al., 2015a), and sub-daily satellite and reanalysis P esti-
mates provide an efficient and consistent means to infer the
most probable UTC boundary of the 24 h accumulation pe-
riod for any gauge with observations during the satellite era
(1979–present; Beck, 2017).

Most previous studies using hydrological modeling to
evaluate the accuracy of P datasets had a regional or sub-
continental focus, used Q observations from a relatively
small number of catchments, considered only a few P

datasets, did not consider reanalysis-based P datasets, or did
not re-calibrate the hydrological model for each P dataset
(e.g., Voisin et al., 2008; Su et al., 2008; Bitew et al., 2012;
Tang et al., 2016). Here, we used 9053 catchments covering
all climate zones and latitudes, considered a diverse range of
P datasets, and re-calibrated the model for each P dataset,
to maximize the generalizability of our findings. Neverthe-
less, our catchments are predominantly located in regions
with dense P gauge networks (i.e., the conterminous US,
Europe, and parts of Australia). Therefore, our results may
not unequivocally generalize to regions with sparse P gauge
networks. Use of another calibration objective function, hy-
drological model, or Ta or Ep forcing may lead to slightly
different results, although we consider it unlikely to change
the overall performance ranking of the P datasets. Finally, a
poor score for a particular P dataset may also simply reflect
a systematic bias that could be easily corrected.

4 Conclusions

This study may represent the most comprehensive global-
scale P dataset evaluation to date. We evaluated 13 uncor-
rected P datasets using P observations from 76 086 gauges,
and 9 gauge-corrected ones using hydrological modeling for
9053 catchments (< 50 000 km2). Our results can be summa-
rized as follows.

1. Among the non-gauge-corrected P datasets, MSWEP-
ng V1.2 and V2.0, based on optimal merging of mul-
tiple satellite and reanalysis P datasets, provided the
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Figure 2. Calibration NSE scores obtained using P time series from (a) CHIRPS V2.0, (b) CMORPH-CRT V1.0, (c) CPC Unified,
(d) MSWEP V1.2, (e) MSWEP V2.0, (f) PERSIANN-CDR V1R1, (g) TMPA 3B42 V7, and (h) WFDEI-CRU. Each data point represents a
catchment centroid. Only the eight best performing P datasets are shown.
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Table 3. Median calibration NSE scores for the gauge-corrected P datasets obtained using HBV. Only the catchments with calibration NSE
values for all P datasets are considered. Thus, catchments at latitudes > 50◦ have been excluded. The results are grouped according to the
five broadest Köppen–Geiger climate categories, commonly referred to using the letters A–E. Values in bold represent the highest score in
each group.

Köppen–Geiger Number of CHIRPS CMORPH-CRT CPC GPCP-1DD MSWEP MSWEP PERSIANN-CDR TMPA 3B42 WFDEI-CRU
climate zone catchments V2.0 V1.0 Unified V1.2 V1.2 V2.0 V1R1 V7

All 8220 0.45 0.17 0.54 0.27 0.58 0.62 0.31 0.41 0.35
Tropical (A) 289 0.40 0.31 0.25 0.22 0.43 0.53 0.26 0.31 0.13
Dry (B) 384 0.17 0.12 0.23 0.12 0.25 0.26 0.12 0.18 0.17
Temperate (C) 3491 0.48 0.44 0.59 0.27 0.60 0.67 0.30 0.45 0.30
Cold (D) 4041 0.44 −0.05 0.53 0.28 0.58 0.61 0.33 0.39 0.42
Polar (E) 14 0.17 −2.62 −0.14 0.23 0.52 0.42 0.19 0.17 0.32

Figure 3. For each catchment, the P dataset with the highest calibration NSE. Each data point represents a catchment centroid. Only the
seven best performing P datasets (excluding MSWEP V1.2 due to its similarity to V2.0) are considered. Note that CHIRPS V2.0, CMORPH-
CRT V1.0, PERSIANN-CDR V1R1, and TMPA 3B42 V7 do not provide data beyond 50, 60, 60, and 50◦ latitude, respectively.

best temporal correlations overall. They were followed,
in order, by reanalyses, estimates based on microwave
remote sensing of rainfall and near-surface soil mois-
ture, and estimates based on thermal IR remote sensing.
MSWEP-ng V2.0 obtained considerably lower mean
annual P trend errors than the other datasets. Con-
trary to expectations, two of the three reanalyses (ERA-
Interim and JRA-55) provided, on average, more reli-
able mean annual P trends than the satellite datasets.

2. Among the uncorrected P datasets, CHIRP V2.0 and
MSWEP-ng V1.2 and V2.0 yielded the most accurate
long-term P means, primarily due to the use of high-
resolution gauge-based climatic datasets to determine
their long-term mean. The reanalyses also provided
reasonably accurate long-term means. The uncertainty

in long-term means among the datasets was generally
greatest in topographically complex and arid regions.
In terms of the annual number of dry days, MSWEP-
ng V2.0 exhibited markedly better performance than the
other datasets, due to the use of CDF corrections af-
ter data merging. The satellite datasets also performed
quite well in this respect, while CHIRP V2.0, the reanal-
yses, MSWEP-ng V1.2, and the soil moisture remote
sensing-based SM2RAIN-ASCAT consistently under-
estimated the number of dry days. The satellite-based
datasets generally exhibited difficulties in detecting P
signals at high latitudes.

3. Among the gauge-corrected P datasets, the datasets di-
rectly incorporating daily gauge data (CPC Unified and
the MSWEP versions) outperformed those directly in-
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corporating temporally coarser gauge data. These in
turn outperformed the datasets that only indirectly in-
corporated gauge data. This highlights the benefit of
explicit and careful incorporation of daily gauge data.
The good performance of the fully gauge-based CPC
Unified is unlikely to generalize to sparse or ungauged
regions. In general, the performance was best in tem-
perate regions, due to the presence of dense monitoring
networks, and worst in arid regions, due to the convec-
tive rainfall and the highly non-linear rainfall–runoff re-
sponse.

So, which P dataset should one use? While this depends
on the region under consideration and the specific user needs
or application, in most cases MSWEP V2.0 appears to be
a good choice: it has a long temporal record (1979–2016),
a fully global coverage (including ocean areas), a compara-
tively high temporal (3-hourly) and spatial (0.1◦) resolution,
daily gauge corrections, and, as demonstrated in the current
study, comparatively good performance for all performance
metrics for all climate types. However, for tropical regions,
CHIRPS V2.0 also presents a viable choice, if a daily tem-
poral resolution suffices, and if the peak magnitude underes-
timation and spurious drizzle are less critical. In regions with
dense rain gauge networks, CPC Unified also offers good
performance. For some regions, notably Africa, it remains
difficult to provide reliable recommendations due to the lim-
ited availability and quality of rain gauge and Q data, high-
lighting the critical importance of maintaining and expanding
data collection efforts.

Data availability. The P datasets evaluated in this study are freely
available via the respective URLs provided in Table 1.
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