Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 21, issue 1
Hydrol. Earth Syst. Sci., 21, 635–650, 2017
https://doi.org/10.5194/hess-21-635-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Sub-seasonal to seasonal hydrological forecasting

Hydrol. Earth Syst. Sci., 21, 635–650, 2017
https://doi.org/10.5194/hess-21-635-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Jan 2017

Research article | 31 Jan 2017

Evaluation of snow data assimilation using the ensemble Kalman filter for seasonal streamflow prediction in the western United States

Chengcheng Huang et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (16 Oct 2016) by Ilias Pechlivanidis
AR by Andrew Newman on behalf of the Authors (22 Nov 2016)  Author's response    Manuscript
ED: Publish subject to minor revisions (further review by Editor) (29 Nov 2016) by Ilias Pechlivanidis
AR by Andrew Newman on behalf of the Authors (09 Dec 2016)  Author's response    Manuscript
ED: Publish subject to minor revisions (further review by Editor) (12 Dec 2016) by Ilias Pechlivanidis
AR by Andrew Newman on behalf of the Authors (19 Dec 2016)  Author's response    Manuscript
ED: Publish as is (20 Dec 2016) by Ilias Pechlivanidis
AR by Andrew Newman on behalf of the Authors (30 Dec 2016)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
This study examined the potential of snow water equivalent data assimilation to improve seasonal streamflow predictions. We examined aspects of the data assimilation system over basins with varying climates across the western US. We found that varying how the data assimilation system is implemented impacts forecast performance, and basins with good initial calibrations see less benefit. This implies that basin-specific configurations and benefits should be expected given this modeling system.
This study examined the potential of snow water equivalent data assimilation to improve seasonal...
Citation