Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 21, issue 12
Hydrol. Earth Syst. Sci., 21, 6401–6423, 2017
https://doi.org/10.5194/hess-21-6401-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Sub-seasonal to seasonal hydrological forecasting

Hydrol. Earth Syst. Sci., 21, 6401–6423, 2017
https://doi.org/10.5194/hess-21-6401-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Dec 2017

Research article | 15 Dec 2017

Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe

Dennis Meißner et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by Editor and Referees) (18 Aug 2017) by Fredrik Wetterhall
AR by Dennis Meißner on behalf of the Authors (22 Sep 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (25 Sep 2017) by Fredrik Wetterhall
RR by Christophe Lavaysse (12 Oct 2017)
RR by Massimiliano Zappa (17 Oct 2017)
ED: Publish as is (02 Nov 2017) by Fredrik Wetterhall
Publications Copernicus
Download
Short summary
Inland waterway transport is a commercial sector relying on hydrological forecasts on different timescales. This paper describes the set-up of a monthly to seasonal forecasting system for the German waterways. Multiple approaches are tested, compared and combined. Despite the predictive limitations on longer lead times, this study reveals the existence of a valuable predictability on monthly up to seasonal timescales. Forecast quality depends on forecast location, lead time and season.
Inland waterway transport is a commercial sector relying on hydrological forecasts on different...
Citation