Articles | Volume 21, issue 12
https://doi.org/10.5194/hess-21-6485-2017
https://doi.org/10.5194/hess-21-6485-2017
Research article
 | 
20 Dec 2017
Research article |  | 20 Dec 2017

Spatiotemporal response of the water cycle to land use conversions in a typical hilly–gully basin on the Loess Plateau, China

Linjing Qiu, Yiping Wu, Lijing Wang, Xiaohui Lei, Weihong Liao, Ying Hui, and Xianyong Meng

Related authors

Exploring the driving factors of compound flood severity in coastal cities: a comprehensive analytical approach
Yan Liu, Ting Zhang, Yi Ding, Aiqing Kang, Xiaohui Lei, and Jianzhu Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-100,https://doi.org/10.5194/hess-2024-100, 2024
Preprint under review for HESS
Short summary
Real-time reservoir flood control operation enhanced by data assimilation
Jingwen Zhang, Ximing Cai, Xiaohui Lei, Pan Liu, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-304,https://doi.org/10.5194/hess-2020-304, 2020
Preprint withdrawn
Short summary
The impact of elevation and flow dynamics on hydrological drought and wet spell characteristics in semi-arid southeast Arizona
Mengtian Lu, Pieter Hazenberg, Xiaohui Lei, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-356,https://doi.org/10.5194/hess-2019-356, 2019
Revised manuscript not accepted
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024,https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
A network approach for multiscale catchment classification using traits
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024,https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Multi-model approach in a variable spatial framework for streamflow simulation
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024,https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024,https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024,https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary

Cited articles

Alkama, R., Marchand, L., Ribes, A., and Decharme, B.: Detection of global runoff changes: results from observations and CMIP5 experiments, Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, 2013.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment – Part 1: Model development, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Bari, M. and Smettem, K. R. J.: Modelling monthly runoff generation processes following land use changes: groundwater–surface runoff interactions, Hydrol. Earth Syst. Sci., 8, 903–922, https://doi.org/10.5194/hess-8-903-2004, 2004.
Bi, H., Zhang, J., Zhu, J., Lin, L., Guo, C., Ren, Y., Yun, L., and Ma, N.: Spatial dynamics of soil moisture in a complex terrain in the semi-arid Loess Plateau region, China, J. Am. Water Resour. As., 44, 1121–1131, https://doi.org/10.1111/j.1752-1688.2008.00236.x, 2008.
Download
Short summary
What are the effects of the Grain for Green project on the water balance in the Loess Plateau of China? Our modeling study indicated that surface runoff and water yield exhibited a decreasing trend with the expansion of woodland on the sloping land because of overland flow retention and intensification of ET, while these effects were at the expense of soil water reduction in the region. Thus, land use planning should consider all water balance components to promote watershed sustainability.