Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 21, issue 1 | Copyright

Special issue: Modeling hydrological processes and changes

Hydrol. Earth Syst. Sci., 21, 99-116, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Jan 2017

Research article | 05 Jan 2017

A comprehensive one-dimensional numerical model for solute transport in rivers

Maryam Barati Moghaddam, Mehdi Mazaheri, and Jamal MohammadVali Samani Maryam Barati Moghaddam et al.
  • Department of Water Structures, Tarbiat Modares University, Tehran, Iran

Abstract. One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.

Publications Copernicus
Special issue
Short summary
In this study a comprehensive model was developed that combines numerical schemes with high-order accuracy for solution of the advection–dispersion equation considering transient storage zones term in rivers. In developing the subjected model (TOASTS), for achieving better accuracy and applicability, irregular-cross sections and unsteady flow regime were considered. For this purpose the QUICK scheme due to its high stability and low approximation error has been used for spatial discretization.
In this study a comprehensive model was developed that combines numerical schemes with...