Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 2 | Copyright
Hydrol. Earth Syst. Sci., 22, 1001-1015, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Feb 2018

Research article | 07 Feb 2018

Effects of microarrangement of solid particles on PCE migration and its remediation in porous media

Ming Wu1,2, Jianfeng Wu1, Jichun Wu1, and Bill X. Hu2 Ming Wu et al.
  • 1Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • 2Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China

Abstract. Groundwater can be stored abundantly in granula-composed aquifers with high permeability. The microstructure of granular materials has important effect on the permeability of aquifers and the contaminant migration and remediation in aquifers is also influenced by the characteristics of porous media. In this study, two different microscale arrangements of sand particles are compared to reveal the effects of microstructure on the contaminant migration and remediation. With the help of fractal theory, the mathematical expressions of permeability and entry pressure are conducted to delineate granular materials with regular triangle arrangement (RTA) and square pitch arrangement (SPA) at microscale. Using a sequential Gaussian simulation (SGS) method, a synthetic heterogeneous site contaminated by perchloroethylene (PCE) is then used to investigate the migration and remediation affected by the two different microscale arrangements. PCE is released from an underground storage tank into the aquifer and the surfactant is used to clean up the subsurface contamination. Results suggest that RTA can not only cause more groundwater contamination, but also make remediation become more difficult. The PCE remediation efficiency of 60.01–99.78% with a mean of 92.52 and 65.53–99.74% with a mean of 95.83% is achieved for 200 individual heterogeneous realizations based on the RTA and SPA, respectively, indicating that the cleanup of PCE in aquifer with SPA is significantly easier. This study leads to a new understanding of the microstructures of porous media and demonstrates how microscale arrangements control contaminant migration in aquifers, which is helpful to design successful remediation scheme for underground storage tank spill.

Download & links
Publications Copernicus
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are...