Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Hydrol. Earth Syst. Sci., 22, 1065-1080, 2018
https://doi.org/10.5194/hess-22-1065-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
08 Feb 2018
Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment
Sebastian Huizer1,2, Max Radermacher3, Sierd de Vries3, Gualbert H. P. Oude Essink1,2, and Marc F. P. Bierkens1,2 1Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
2Department of Subsurface and Groundwater Systems, Deltares, Utrecht, the Netherlands
3Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
Abstract. For a large beach nourishment called the Sand Engine – constructed in 2011 at the Dutch coast – we have examined the impact of coastal forcing (i.e. natural processes that drive coastal hydro- and morphodynamics) and groundwater recharge on the growth of a fresh groundwater lens between 2011 and 2016. Measurements of the morphological change and the tidal dynamics at the study site were incorporated in a calibrated three-dimensional and variable-density groundwater model of the study area. Simulations with this model showed that the detailed incorporation of both the local hydro- and morphodynamics and the actual recharge rate can result in a reliable reconstruction of the growth in fresh groundwater resources. In contrast, the neglect of tidal dynamics, land-surface inundations, and morphological changes in model simulations can result in considerable overestimations of the volume of fresh groundwater. In particular, wave runup and coinciding coastal erosion during storm surges limit the growth in fresh groundwater resources in dynamic coastal environments, and should be considered at potential nourishment sites to delineate the area that is vulnerable to salinization.
Citation: Huizer, S., Radermacher, M., de Vries, S., Oude Essink, G. H. P., and Bierkens, M. F. P.: Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment, Hydrol. Earth Syst. Sci., 22, 1065-1080, https://doi.org/10.5194/hess-22-1065-2018, 2018.
Publications Copernicus
Download
Short summary
For a large beach nourishment called the Sand Engine we have examined the impact of groundwater recharge, tides, storm surges, and geomorphological changes on the growth of the fresh groundwater resources between 2011 and 2016. With detailed model simulations of these coastal processes we were able to get a good match with field measurements, and demonstrated the importance of wave runup and coastal erosion in studies on fresh groundwater in such dynamic coastal environments.
For a large beach nourishment called the Sand Engine we have examined the impact of groundwater...
Share