Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 2 | Copyright

Special issue: Environmental changes and hazards in the Dead Sea region (NHESS/ACP/HESS/SE...

Hydrol. Earth Syst. Sci., 22, 1135-1155, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Feb 2018

Research article | 09 Feb 2018

Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates

Jutta Metzger1, Manuela Nied1, Ulrich Corsmeier1, Jörg Kleffmann2, and Christoph Kottmeier1 Jutta Metzger et al.
  • 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
  • 2Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal, Germany

Abstract. The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100% higher than during daytime. The median daily evaporation is 4.3mm d−1 in July and 1.1mm d−1 in December. The annual evaporation of the water surface at the measurement location was 994±88mm a−1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley–Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0.92 and 0.97. In summary, this study introduces a new approach to measure lake evaporation with a station located at the shoreline, which is also transferable to other lakes. It provides the first directly measured Dead Sea evaporation rates as well as applicable methods for evaporation calculation. The first one enables us to further close the Dead Sea water budget, and the latter one enables us to facilitate water management in the region.

Download & links
Publications Copernicus
Special issue
Short summary
This paper is motivated by the need for more precise evaporation rates from the Dead Sea (DS) and methods to estimate and forecast evaporation. A new approach to measure lake evaporation with a station located at the shoreline, also transferable to other lakes, is introduced. The first directly measured DS evaporation rates are presented as well as applicable methods for evaporation calculation. These results enable us to further close the DS water budget and to facilitate the water management.
This paper is motivated by the need for more precise evaporation rates from the Dead Sea (DS)...