Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 1221–1237, 2018
https://doi.org/10.5194/hess-22-1221-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Vegetation changes under a changing environment and the impacts...

Hydrol. Earth Syst. Sci., 22, 1221–1237, 2018
https://doi.org/10.5194/hess-22-1221-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Feb 2018

Research article | 13 Feb 2018

Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

Samuel Saxe et al.

Related authors

Towards simplification of hydrologic modeling: identification of dominant processes
Steven L. Markstrom, Lauren E. Hay, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 20, 4655–4671, https://doi.org/10.5194/hess-20-4655-2016,https://doi.org/10.5194/hess-20-4655-2016, 2016
Short summary
Parameter regionalization of a monthly water balance model for the conterminous United States
Andrew R. Bock, Lauren E. Hay, Gregory J. McCabe, Steven L. Markstrom, and R. Dwight Atkinson
Hydrol. Earth Syst. Sci., 20, 2861–2876, https://doi.org/10.5194/hess-20-2861-2016,https://doi.org/10.5194/hess-20-2861-2016, 2016
Short summary
High-resolution land surface modeling utilizing remote sensing parameters and the Noah UCM: a case study in the Los Angeles Basin
P. Vahmani and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4791–4806, https://doi.org/10.5194/hess-18-4791-2014,https://doi.org/10.5194/hess-18-4791-2014, 2014
Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada
P. D. Micheletty, A. M. Kinoshita, and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014,https://doi.org/10.5194/hess-18-4601-2014, 2014
A framework for evaluating regional hydrologic sensitivity to climate change using archetypal watershed modeling
S. R. Lopez, T. S. Hogue, and E. D. Stein
Hydrol. Earth Syst. Sci., 17, 3077–3094, https://doi.org/10.5194/hess-17-3077-2013,https://doi.org/10.5194/hess-17-3077-2013, 2013

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Technical note: A two-sided affine power scaling relationship to represent the concentration–discharge relationship
José Manuel Tunqui Neira, Vazken Andréassian, Gaëlle Tallec, and Jean-Marie Mouchel
Hydrol. Earth Syst. Sci., 24, 1823–1830, https://doi.org/10.5194/hess-24-1823-2020,https://doi.org/10.5194/hess-24-1823-2020, 2020
Short summary
On the flood peak distributions over China
Long Yang, Lachun Wang, Xiang Li, and Jie Gao
Hydrol. Earth Syst. Sci., 23, 5133–5149, https://doi.org/10.5194/hess-23-5133-2019,https://doi.org/10.5194/hess-23-5133-2019, 2019
New water fractions and transit time distributions at Plynlimon, Wales, estimated from stable water isotopes in precipitation and streamflow
Julia L. A. Knapp, Colin Neal, Alessandro Schlumpf, Margaret Neal, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 4367–4388, https://doi.org/10.5194/hess-23-4367-2019,https://doi.org/10.5194/hess-23-4367-2019, 2019
Short summary
A line integral-based method to partition climate and catchment effects on runoff
Mingguo Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-452,https://doi.org/10.5194/hess-2019-452, 2019
Revised manuscript accepted for HESS
Short summary
Does the weighting of climate simulations result in a better quantification of hydrological impacts?
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019,https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary

Cited articles

Aronica, G., Candela, A., and Santoro, M.: Changes in the hydrological response of two Sicilian basins affected by fires, in: FRIEND 2002 – Regional Hydrology: Bridging the Gap between Research and Practice, edited by: van Lanen, H. A. J. and Demuth, S., Proc. Cape Town Conf., March 2002, IAHS Press, Wallingford, UK, IAHS Publ. 274, 163–172, 2002.
Baker, D. B., Richards, R. P., Loftus, T. T., and Kramer, J. W.: A new flashiness index: Characteristics and applications to Midwestern rivers and streams, J. Am. Water Resour. As. (JAWRA), 40, 503–522, 2004.
Barbosa, P. M., Stroppiana, D., Gregoire, J. M., and Pereira, J. M. C.: An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions, Global Biogeochem. Cy., 13, 933–950, 1999.
Bart, R. and Hope, A.: Streamflow response to fire in large catchments of a Mediterranean-climate region using paired-catchment experiments, J. Hydrol., 388, 370–378, 2010.
Benavides-Solorio, J. and MacDonald, L. H.: Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range, Hydrol. Process., 15, 2931–2952, 2001.
Publications Copernicus
Download
Short summary
We investigate the impact of wildfire on watershed flow regimes, examining responses across the western United States. On a national scale, our results confirm the work of prior studies: that low, high, and peak flows typically increase following a wildfire. Regionally, results are more variable and sometimes contradictory. Our results may be significant in justifying the calibration of watershed models and in contributing to the overall observational analysis of post-fire streamflow response.
We investigate the impact of wildfire on watershed flow regimes, examining responses across the...
Citation