Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1221-2018
https://doi.org/10.5194/hess-22-1221-2018
Research article
 | 
13 Feb 2018
Research article |  | 13 Feb 2018

Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

Samuel Saxe, Terri S. Hogue, and Lauren Hay

Related authors

Implications of model selection: a comparison of publicly available, conterminous US-extent hydrologic component estimates
Samuel Saxe, William Farmer, Jessica Driscoll, and Terri S. Hogue
Hydrol. Earth Syst. Sci., 25, 1529–1568, https://doi.org/10.5194/hess-25-1529-2021,https://doi.org/10.5194/hess-25-1529-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023,https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023,https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Regional significance of historical trends and step changes in Australian streamflow
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023,https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary
River flooding mechanisms and their changes in Europe revealed by explainable machine learning
Shijie Jiang, Emanuele Bevacqua, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 26, 6339–6359, https://doi.org/10.5194/hess-26-6339-2022,https://doi.org/10.5194/hess-26-6339-2022, 2022
Short summary
Changes in nonlinearity and stability of streamflow recession characteristics under climate warming in a large glaciated basin of the Tibetan Plateau
Jiarong Wang, Xi Chen, Man Gao, Qi Hu, and Jintao Liu
Hydrol. Earth Syst. Sci., 26, 3901–3920, https://doi.org/10.5194/hess-26-3901-2022,https://doi.org/10.5194/hess-26-3901-2022, 2022
Short summary

Cited articles

Aronica, G., Candela, A., and Santoro, M.: Changes in the hydrological response of two Sicilian basins affected by fires, in: FRIEND 2002 – Regional Hydrology: Bridging the Gap between Research and Practice, edited by: van Lanen, H. A. J. and Demuth, S., Proc. Cape Town Conf., March 2002, IAHS Press, Wallingford, UK, IAHS Publ. 274, 163–172, 2002.
Baker, D. B., Richards, R. P., Loftus, T. T., and Kramer, J. W.: A new flashiness index: Characteristics and applications to Midwestern rivers and streams, J. Am. Water Resour. As. (JAWRA), 40, 503–522, 2004.
Barbosa, P. M., Stroppiana, D., Gregoire, J. M., and Pereira, J. M. C.: An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions, Global Biogeochem. Cy., 13, 933–950, 1999.
Bart, R. and Hope, A.: Streamflow response to fire in large catchments of a Mediterranean-climate region using paired-catchment experiments, J. Hydrol., 388, 370–378, 2010.
Benavides-Solorio, J. and MacDonald, L. H.: Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range, Hydrol. Process., 15, 2931–2952, 2001.
Download
Short summary
We investigate the impact of wildfire on watershed flow regimes, examining responses across the western United States. On a national scale, our results confirm the work of prior studies: that low, high, and peak flows typically increase following a wildfire. Regionally, results are more variable and sometimes contradictory. Our results may be significant in justifying the calibration of watershed models and in contributing to the overall observational analysis of post-fire streamflow response.