Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 1299–1315, 2018
https://doi.org/10.5194/hess-22-1299-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 1299–1315, 2018
https://doi.org/10.5194/hess-22-1299-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Feb 2018

Research article | 20 Feb 2018

Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

Mehmet C. Demirel et al.
Viewed  
Total article views: 3,028 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,049 941 38 3,028 39 55
  • HTML: 2,049
  • PDF: 941
  • XML: 38
  • Total: 3,028
  • BibTeX: 39
  • EndNote: 55
Views and downloads (calculated since 09 Oct 2017)
Cumulative views and downloads (calculated since 09 Oct 2017)
Viewed (geographical distribution)  
Total article views: 2,901 (including HTML, PDF, and XML) Thereof 2,880 with geography defined and 21 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 05 Dec 2019
Publications Copernicus
Download
Short summary
Satellite data offer great opportunities to improve spatial model predictions by means of spatially oriented model evaluations. In this study, satellite images are used to observe spatial patterns of evapotranspiration at the land surface. These spatial patterns are utilized in combination with streamflow observations in a model calibration framework including a novel spatial performance metric tailored to target the spatial pattern performance of a catchment-scale hydrological model.
Satellite data offer great opportunities to improve spatial model predictions by means of...
Citation