Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 2 | Copyright
Hydrol. Earth Syst. Sci., 22, 1299-1315, 2018
https://doi.org/10.5194/hess-22-1299-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Feb 2018

Research article | 20 Feb 2018

Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

Mehmet C. Demirel et al.
Related authors
The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models
Julian Koch, Mehmet Cüneyd Demirel, and Simon Stisen
Geosci. Model Dev., 11, 1873-1886, https://doi.org/10.5194/gmd-11-1873-2018,https://doi.org/10.5194/gmd-11-1873-2018, 2018
The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models
M. C. Demirel, M. J. Booij, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 19, 275-291, https://doi.org/10.5194/hess-19-275-2015,https://doi.org/10.5194/hess-19-275-2015, 2015
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Modeling freshwater quality scenarios with ecosystem-based adaptation in the headwaters of the Cantareira system, Brazil
Denise Taffarello, Raghavan Srinivasan, Guilherme Samprogna Mohor, João Luis Bittencourt Guimarães, Maria do Carmo Calijuri, and Eduardo Mario Mendiondo
Hydrol. Earth Syst. Sci., 22, 4699-4723, https://doi.org/10.5194/hess-22-4699-2018,https://doi.org/10.5194/hess-22-4699-2018, 2018
A geostatistical data-assimilation technique for enhancing macro-scale rainfall–runoff simulations
Alessio Pugliese, Simone Persiano, Stefano Bagli, Paolo Mazzoli, Juraj Parajka, Berit Arheimer, René Capell, Alberto Montanari, Günter Blöschl, and Attilio Castellarin
Hydrol. Earth Syst. Sci., 22, 4633-4648, https://doi.org/10.5194/hess-22-4633-2018,https://doi.org/10.5194/hess-22-4633-2018, 2018
How good are hydrological models for gap-filling streamflow data?
Yongqiang Zhang and David Post
Hydrol. Earth Syst. Sci., 22, 4593-4604, https://doi.org/10.5194/hess-22-4593-2018,https://doi.org/10.5194/hess-22-4593-2018, 2018
Incremental model breakdown to assess the multi-hypotheses problem
Florian U. Jehn, Lutz Breuer, Tobias Houska, Konrad Bestian, and Philipp Kraft
Hydrol. Earth Syst. Sci., 22, 4565-4581, https://doi.org/10.5194/hess-22-4565-2018,https://doi.org/10.5194/hess-22-4565-2018, 2018
How can expert knowledge increase the realism of conceptual hydrological models? A case study based on the concept of dominant runoff process in the Swiss Pre-Alps
Manuel Antonetti and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4425-4447, https://doi.org/10.5194/hess-22-4425-2018,https://doi.org/10.5194/hess-22-4425-2018, 2018
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements, FAO Irrigation and drainage paper 56, http://www.fao.org/docrep/x0490e/x0490e00.htm (last access: 16 February 2018), 1998.
Berezowski, T., Nossent, J., Chormański, J., and Batelaan, O.: Spatial sensitivity analysis of snow cover data in a distributed rainfall-runoff model, Hydrol. Earth Syst. Sci., 19, 1887–1904, https://doi.org/10.5194/hess-19-1887-2015, 2015.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.
Chen, J. M., Chen, X., Ju, W., and Geng, X.: Distributed hydrological model for mapping evapotranspiration using remote sensing inputs, J. Hydrol., 305, 15–39, https://doi.org/10.1016/j.jhydrol.2004.08.029, 2005.
Publications Copernicus
Download
Short summary
Satellite data offer great opportunities to improve spatial model predictions by means of spatially oriented model evaluations. In this study, satellite images are used to observe spatial patterns of evapotranspiration at the land surface. These spatial patterns are utilized in combination with streamflow observations in a model calibration framework including a novel spatial performance metric tailored to target the spatial pattern performance of a catchment-scale hydrological model.
Satellite data offer great opportunities to improve spatial model predictions by means of...
Citation
Share